MADEIRA: VIGAS DE SEÇÃO COMPOSTA T, TENDO O PARAFUSO COMO ELEMENTO DE SOLIDARIZAÇÃO.

MARIA ESTÂNIA MENDONÇA PASSOS

ORIENTADOR: Prof. Dr. EDUARDO CHAHUD
UNIVERSIDADE FEDERAL DE MINAS GERAIS
ESCOLA DE ENGENHARIA
DEPARTAMENTO DE ENGENHARIA DE ESTRUTURAS

MADEIRA: VIGAS DE SEÇÃO COMPOSTA TENDO O PARAFUSO COMO ELEMENTO DE SOLIDARIZAÇÃO.

MARIA ESTÂNIA MENDONÇA PASSOS

Tese apresentada à Escola de Engenharia da Universidade Federal de Minas Gerais como parte dos requisitos necessários à obtenção do título de "Mestre em Engenharia de Estruturas".

COMISSÃO JULGADORA:
Prof. Doutor EDUARDO CHAHUD (orientador) EEFM MG
Prof. Doutor FRANCISCO ANTONIO ROCCO LAHR EESC
Prof. Doutor FRANCISCO ANTONIO R. GESUALDO U.F. Uberlândia
Prof. Doutor EDGAR V. MANTILLA CARRASCO EEFM MG
Prof. Mestre GABRIEL DE OLIVEIRA RIBEIRO EEFM MG

Belo Horizonte, Fevereiro de 1992
RESUMO

No desenvolvimento deste trabalho, foi realizada uma revisão bibliográfica da literatura nacional e internacional, de publicações desde 1942 até 1991, sobre seções compostas de madeira.

Posteriormente à revisão bibliográfica, foi desenvolvida uma pesquisa experimental sobre vigas de seção composta T, tendo o parafuso auto-atarraxante como elemento de união.

Foram utilizadas duas espécies de madeira, a Castanheira (nativa) e o Pinus Elliottii (de reflorestamento).

Para cada elemento de alma e mesa, foi determinado o módulo de elasticidade longitudinal, \(E \), através do ensaio de flexão. São apresentados os valores de \(E \) para todas as peças, a partir dos quais, posteriormente, são determinados os módulos de elasticidade das vigas compostas.

Depois de montadas as vigas de seção T, as mesmas foram ensaiadas, variando o espaçamento entre parafusos, obtendo-se desta forma o valor do momento de inércia real, \(I_r \), da viga para cada número de parafusos. Os valores de \(I_r \) são apresentados, comparando-os aos valores do momento de inércia teórico para cada número de parafusos.
ABSTRACT

For the purpose of this work a bibliographic study of brazilian and international publications from 1942 until 1991 was performed, related to composite wooden structures.

Lately, an experimental research about composite T section beams connected by wood screw was developed.

Two kinds of wood were studied: the "Castanheira" (native) and "Pinus Elliottii" (reforestation).

For both web and flange was established the Longitudinal Elasticity Modulus (E) by flexural experiment. Values of E for all the member are presented, from which E for the composite beam is analytically determined.

Composite T section beams were experimented for several numbers of wood screw so as to obtain the real inertial moment for the beam, for each quantity of screw. Results are compared to the theoretical inertial moment for each number of screw.
A meus pais, Zeferino e Celeste e aos meus irmãos.
Ao meu marido, Gabriel.
Agradeimentos

A todos aqueles que, direta ou indiretamente, contribuíram para a realização deste trabalho, e, em particular:

- ao Centro Federal de Educação Tecnológica de Minas Gerais, pelo apoio no decorrer deste trabalho;

- ao prof. Alcebiades, pela sua dedicação e colaboração como orientador acadêmico;

- aos professores Calixto, Elvio e Edgar, pelas sugestões e amizade demonstrada;

- ao Departamento de Engenharia de Estruturas da UFMG, pelo apoio durante todo o tempo deste curso;

- ao Gabriel, pela elaboração dos desenhos;

- ao sr. Ataide, pelo preparo das peças de madeira;

- ao Amilton, pela colaboração na montagem das vigas e realização dos ensaios;

- à MICHELETTO MINAS LTDA, pelo apoio e doação de parafusos para a confecção das vigas;

- ao prof. Carlos Alberto, do CEFET-MG, pela revisão;

- à Regina, ao Ramon e Randolfo pela colaboração no uso do computador;

- ao Flávio e Evandro pela colaboração e amizade.
AGRADECIMENTOS ESPECIAIS

ao prof. Dr. Eduardo Chahud, como orientador de pesquisa, pela sua dedicação e amizade demonstrada.
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>INTRODUÇÃO</td>
<td>01</td>
</tr>
<tr>
<td>02</td>
<td>OBJETIVO</td>
<td>03</td>
</tr>
<tr>
<td>03</td>
<td>ETAPAS DO TRABALHO</td>
<td>04</td>
</tr>
<tr>
<td>04</td>
<td>REVISÃO BIBLIOGRÁFICA</td>
<td>05</td>
</tr>
<tr>
<td>05</td>
<td>MATERIAIS</td>
<td>24</td>
</tr>
<tr>
<td>06</td>
<td>ENSAIOS PRELIMINARES</td>
<td>30</td>
</tr>
<tr>
<td>07</td>
<td>MONTAGEM DAS VIGAS</td>
<td>47</td>
</tr>
<tr>
<td>08</td>
<td>ENSAIOS PRINCIPAIS DAS VIGAS DE SEÇÃO COMPOSTA</td>
<td>56</td>
</tr>
<tr>
<td>09</td>
<td>ENSAIOS DAS LIGAÇÕES PARAFUSADAS</td>
<td>83</td>
</tr>
<tr>
<td>10</td>
<td>EXEMPLO DE CÁLCULO E COMPARAÇÃO DE RESULTADOS</td>
<td>93</td>
</tr>
<tr>
<td>11</td>
<td>CONCLUSÕES</td>
<td>101</td>
</tr>
<tr>
<td>12</td>
<td>PROPOSTA</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>REFERÊNCIAS BIBLIOGRÁFICAS</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>BIBLIOGRAFIA</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>ANEXO 1</td>
<td>121</td>
</tr>
</tbody>
</table>
1. INTRODUÇÃO

Considerando as excelentes características físicas e mecânicas de muitas espécies de madeira nacionais e de algumas importadas, e, à vista de suas disponibilidades no país, tanto em florestas naturais como em regiões de reflorestamento e da possibilidade de sua renovação em intervalos de tempo relativamente curtos, têm-se desenvolvido, nos centros de estudos da madeira, grandes variedades de pesquisa, abrangendo as mais diversas aplicações deste material, tanto arquitetônicas quanto estruturais.

As pesquisas em andamento no país, com relação à aplicação racional da madeira, estão fundamentadas na certeza da existência de espécies alternativas, que irão substituir as espécies consagradas na construção civil, como o Pinho do Paraná e a Peroba Rosa, hoje em fase de esgotamento. Aliada a este fato, existe a necessidade urgente de alterações no texto da NBR 7190 (Norma Brasileira para o Cálculo e a Execução de Estruturas de Madeira), que data de 1951 e se mostra insuficiente para atender as necessidades atuais dos projetistas de estruturas de madeira.

Esses fatos levaram vários pesquisadores a se preocuparem com o estudo dos diversos itens da NBR 7190, através de abordagem crítica, visando a definição dos estudos experimentais mais importantes para gerar subsídios às alterações da citada norma.

A NBR 7190 está inteiramente estabelecida de conformidade com os critérios das tensões admissíveis para o dimensionamento dos elementos componentes das estruturas.
de madeira. A validade destes critérios não vinha sendo discutida até a década de 70, quando, para acompanhar a evolução dos critérios de dimensionamento de estruturas de concreto armado e de estruturas metálicas, pesquisadores canadenses, norte-americanos e europeus iniciaram as pesquisas teóricas e experimentais com a finalidade de atualizar, também, os critérios de dimensionamento das estruturas de madeira. Documentos publicados pelo CEB (Comitê Europeu do Concreto) definem os princípios gerais a serem seguidos para a atualização das Normas para o Cálculo estrutural.

A ABNT (Associação Brasileira de Normas Técnicas) também já apresentou algumas indicações a respeito do assunto.

O somatório dos esforços, fatalmente será o responsável pela minimização do tempo a ser empregado para a atualização da NBR 7190.

Dentre os vários tópicos a serem abordados, encontra-se a determinação do comportamento de peças de madeira de seção composta quando submetidas a esforços de flexão, em função do tipo de elementos utilizados na ligação das peças, tais como: pregos, cavilhas, tarugos, parafusos, anéis metálicos, anéis plásticos e adesivos.

Os critérios da NBR 7190, para o dimensionamento de peças de madeira de seção composta, submetidas à solicitação de flexão, envolvem indicações muito vagas, bem como hipóteses de difícil ocorrência na prática. Do mesmo modo, a NBR 7190 estabelece uma redução da tensão admissível na borda comprimida para vigas de seção composta. Esta redução é feita em função de parâmetros geométricos da viga, como a altura da mesa e da alma e a largura da mesa e da alma. Na realidade, o coeficiente de redução é função do tipo de conector empregado.
2. OBJETIVO

O objetivo deste trabalho é verificar a viabilidade de se utilizar o parafuso auto-ataraxante como elemento de solidarização para vigas compostas.
3. ETAPAS DE TRABALHO

No desenvolvimento deste trabalho será realizado:

- completa revisão bibliográfica, com ênfase na bibliografia internacional, com vistas a situar, adequadamente, o problema no contexto do conhecimento brasileiro sobre o comportamento de peças compostas de madeira submetidas a esforços de flexão;

- determinação experimental do módulo de elasticidade longitudinal para todas as barras de madeira que serão utilizadas na composição das vigas;

- estudo preliminar do comportamento do parafuso autotarraxante em ligações submetidas à compressão paralela às fibras;

- desenvolvimento de um exemplo, comparando os resultados obtidos experimentalmente com os valores de cálculos resultantes de um dimensionamento segundo normas que tratam do problema;

- redação do texto da dissertação, contendo todas as observações e conclusões do trabalho.
4. REVISÃO BIBLIOGRÁFICA

No que diz respeito a vigas compostas de madeira tendo o parafuso como elemento de solidarização, não existe uma literatura muito farta, nem mesmo a internacional. Existem poucos trabalhos e cada um se concentra em poucos detalhes da composição e comportamento da peça estrutural.

4.1. Vigas Compostas

Alguns estudos anteriores de seções compostas de madeira serão citados a seguir.

LEWIS e DAWLEY (1), em 1943, apresentaram trabalho relativo a detalhes construtivos de reforços usados em viga caixão. Trabalharam com vigas com almas de compensado e flanges maciços. Os testes tiveram como objetivo determinar o efeito das dimensões do painel, espessura da alma, direção das fibras no empenamento e resistência ao cisalhamento. Os ensaios foram conduzidos para vários tipos diferentes de enrijecedores, utilizando cola ou parafuso auto-atarraxante para unir enrijecedor aos flanges. Nenhum método racional de projeto de enrijecedor, contudo, pode ser sugerido sem pesquisa adicional.

EBELING, OESTERBLOM, HOQUE, NOVICK e HANSEN (2), em 1946, apresentaram métodos e fórmulas para dimensionamento de vigas I e caixão. Concluíram serem
necessárias mais informações sobre o empenamento lateral de vigas e que, dados experimentais sobre a capacidade de carga de vigas com flanges e alma ligados por todos os tipos de conectores, ainda eram deficientes.

DOYLE (3), em 1964, realizou trabalho experimental conduzido no Forest Products Laboratory (FPL), para estudar o efeito de diferentes condições atmosféricas na resistência ao cisalhamento da ligação entre madeira maciça e compensado. O elemento de união foi o prego e a cola trabalhando em conjunto.

GOODMAN e POPOV (4), em 1969, apresentaram uma consistente teoria da flexão para vigas compostas com escorregamento entre camadas. A hipótese clássica de Bernoulli-Navier, de seções permanecerem planas, é considerada aplicável para cada camada. A teoria desenvolvida, no caso limite, de conexão rígida entre camadas, contém a teoria convencional para vigas sólidas como um caso especial. Deduziu uma equação diferencial para análise de vigas mistas. Excelente ajuste para os resultados experimentais foi verificado com vigas de camadas de madeira. Na composição das vigas de madeira, algumas foram unidas com cola e prego, sendo cola nas extremidades e pregos no meio e outras com apenas pregos.

KUENZI e WILKINSON (5), em 1971, mostraram que é possível prever os deslocamentos e tensões para vigas compostas com ligação de rigidez finita. Foi feita uma pesquisa experimental, envolvendo a avaliação de vários compostos. As vigas foram montadas, algumas com pregos e outras, coladas. Os resultados desse estudo podem ser utilizados para maior eficiência dos projetos de estruturas com peças compostas.

RAMAKER e DAVISTER (6), em 1972, realizaram
pesquisa em vigas I, constituídas de alma de lâminas de madeira dura coladas, e flanges de madeira maciça, tendo ligações com adesivo resorcínol. As vigas foram testadas, simulando carregamento de telhado. Confirmaram que pode ser previsto o comportamento de lâminas de madeira dura coladas em estruturas.

FOSCHI e BONAC (7), em 1977, estudaram curvas de carga x deslocamento relativo para algumas ligações comumente usadas em componentes estruturais, utilizando pregos comuns. Valores de rigidez obtidos se compararam com aqueles obtidos pelo método de Wilkinson, e cargas últimas se compararam com aquelas obtidas pelo processo de Larsen.

HILSON e RODD (8), em 1979, examinaram protótipos de vigas e demonstraram a importância de se ter alma esbelta e flange rígido. As vigas eram compostas de flange de madeira maciça e alma de madeira dura coladas, com ligações coladas das mesas com a alma. Mostraram, graficamente, que, considerando o comportamento pos-deformação da alma, para vigas com almas muito esbeltas, se superestima sua capacidade de cisalhamento. Foram propostas correções para permitir o uso dos gráficos para vigas de multiplos vãos.

DOBLIN McNATT (9), em 1980, pesquisou o funcionamento da viga composta com alma de lâminas de madeira dura coladas e mesa de madeira maciça em edifícios e constatou que vigas I com deste tipo de alma têm performance similar a vigas I com alma de compensado.

MARCEL SAMSON (10), em 1983, realizou estudos para determinar a capacidade de carga de vigas com seção transversal I, de alma dupla com flanges em 3 lâminas de madeira de diferentes espécies. Os resultados mostraram as vantagens práticas deste tipo de alma em vigas compostas.
Concluíram que a resistência da viga à flexão é, consideravelmente, afetada pela qualidade do flange.

KAMIYA (11), em 1983, desenvolveu uma teoria básica para analisar o comportamento não linear na flexão, de peças com camadas pregadas. Um procedimento analítico, utilizando computador, e um procedimento simples para prever o comportamento aproximado, sem o uso do computador, foram apresentados. Ambos os procedimentos deram excelentes resultados quando comparados aos dados experimentais. A não linearidade se deve à deformação do conector.

MANTILLA (12), em 1983, apresentou trabalho contendo informações a respeito de pregos. Sua fundamentação teórica e experimental demonstrou a eficiência de ligações pregadas.

HELMUT BREUER (13), em 1983, mostrou, em seu trabalho, alguns aspectos técnicos das ligações de peças estruturais de madeira através de conectores metálicos e algumas observações construtivas relacionadas à origem do sistema. Nesse trabalho sugere uma rotina para o cálculo destas ligações, com base em resultados de ensaios de laboratório. Apresentou um critério para a determinação de cargas admissíveis nas ligações.

ZAGO UJVARI (14), em 1983, apresentou trabalho visando a dar subsídios para o cálculo de ligações executadas em peças submetidas a esforços de tração, compressão, flexão e cisalhamento, fornecendo procedimento, metodologia, característica, coeficientes de minoração e majoração e, ainda, resultados de ensaios realizados em modelos reais, com alguns tipos de madeira.

LEICHTI e TANG (15), em 1988, estudaram vigas de seção I e concluíram que a história do carregamento não
influencia no mecanismo de ruptura em ensaios destrutivos.

KAMIYA (16), em 1988, apresentou teoria linear para prever, aproximadamente, o empenamento de um painel.

LEICHT, FALK e LAUFENBERG (17), em 1989, apresentaram trabalho de revisão da literatura disponível no estado da arte de vigas de seção I. Os resultados da análise teórica e experimental ilustraram os efeitos dos materiais, juntas, geometria e comportamento de vigas em curto e longo tempo.

PELLICANE, STONE e VANDERBILT (18), em 1991, fizeram uma pesquisa para desenvolver um procedimento para prever a curva carga X escorregamento lateral de juntas de madeira pregadas. Os resultados tornaram possível a previsão de parâmetros-chave para um modelo comumente usado em um vasto campo de geometria de juntas. Utilizaram dados de trabalhos anteriores de McLain e Wilkinson para o cálculo de parâmetros para configuração de juntas padrão.

CALIXTO (19), em 1991, em seu trabalho realizado na University of Texas at Austin, confirma que peças estruturais de seção composta retangular são de simples construção, porém de complexa análise. Foram realizados alguns ensaios para verificação do programa proposto para análise.

4.2. Ligações Parafusadas

NEWLIN e GAHAGAN (20), em 1938, realizaram algumas séries de testes, utilizando parafusos auto-atarraxantes longos e compararam com resultados
anteriores de uma série de ensaios com parafusos com porcas. Esse trabalho, realizado para o FPL, como parte de uma pesquisa geral de juntas de madeira e fixadores, apresentou resultados de resistência ao arrancamento e resistência ao deslocamento lateral.

LUCHESE e STAMATO (21), em 1967, apresentaram trabalho contendo os resultados e conclusões de ensaios executados com o objetivo de determinar as cargas admissíveis nas ligações de peças de Peroba Rosa com parafusos. Para evitar o atrito causado pelo aperto do parafuso, a maioria dos corpos de prova foram montados com pinos, isto é, equivalentes a parafusos sem porcas e arruelas. Foram ensaiadas 116 peças com solicitações paralelas às fibras e 106 com solicitações perpendiculares às fibras, que permitiram a fixação das cargas admissíveis, através de expressões muito simples, com parâmetros determinados estatisticamente.

A revisão apresentada pela TRADA (22), em 1985, trabalho sobre vários tipos de conectores mecânicos para estruturas de madeira, concluiu que parafusos, como os pregos, são viáveis em vários materiais e possibilitam um maior número de formas e fins, inclusive o acabamento do parafuso pode ser, também, decorativo. São feitos comentários sobre a quantidade de penetração, diâmetro, carga de arrancamento. Mostra ainda as várias formas de cabeças de parafusos.

McLAIN (23), em 1987, apresentou, em seu trabalho, um resumo dos correntes meios de montagem e valores admissíveis de projeto para vários sistemas comuns de conexões. As implicações e inadequações desses métodos são apontados. Um breve resumo das recentes pesquisas e problemas comuns para vários tipos de conexões é discutido. Maiores recomendações de projeto de parafusos
auto-atarraxantes em juntas de madeira são baseadas em trabalhos de *Fairchild* e *Cockrell*.

4.3. Normas

4.3.1 - NORMA BRASILEIRA PARA CÁLCULO E EXECUÇÃO DE ESTRUTURAS DE MADEIRA - NBR 7190 - Associação Brasileira de Normas Técnicas (24), de 1951, essa norma fixa condições a serem obedecidas no projeto e execução de estruturas correntes de madeira, mas não se aplica às estruturas de madeira laminada colada ou compensada. Em suas disposições construtivas, item 37, estabelece que o diâmetro mínimo de parafusos ou pinos é de 16 mm para peças principais de pontes e de 9 mm para os demais casos.

Quanto a ligações, item 40-c, prescreve que os parafusos devem ser simetricamente dispostos em relação ao eixo da peça e de tal maneira que seja reduzido ao mínimo o risco de se afrouxarem simultaneamente.

Para a colocação do parafuso deve ser feita furação prévia.

Quanto ao espaçamento de parafusos, item 42-a, prescreve que o espaçamento mínimo, entre centros de dois parafusos de uma mesma linha paralela à direção das fibras, deve ser quatro vezes o diâmetro do parafuso, a distância mínima do centro do último parafuso à extremidade deve ser sete e quatro vezes o diâmetro do parafuso na tração e compressão, respectivamente. No item 42-b diz, que a distância mínima do centro de qualquer parafuso à aresta lateral, medida perpendicularly às fibras, é uma vez e meia o diâmetro do parafuso, se o esforço transmitido é paralelo às fibras e quatro vezes na zona comprimida, se o
esforço é perpendicular às fibras.

Em seu item 32, faz recomendações para o cálculo de tensões nas bordas de vigas compostas de secção transversal retangular cheia, entarugadas e endentadas

\[\sigma = \pm \frac{M}{w} \]

onde,

\[w = 0.85 \frac{bd^2}{g} \]

no caso de dois elementos e

\[w = 0.70 \frac{bd^2}{g} \]

no caso de três elementos.

sendo: \(\sigma \) = tensão normal
\(M \) = momento fletor
\(w \) = módulo resistente à flexão

No item 23, dispõe sobre tensões em vigas I e caixão, solicitadas à flexão simples

\[\sigma = -\frac{M}{w} \]

onde deverão ser considerados, no cálculo de \(w \), todos os enfraquecimentos devidos às ligações.

No item 54, estabelece que a tensão de compressão paralela às fibras, na borda comprimida, na flexão simples não deve exceder:

- em peças de secção retangular,
 \[\sigma_f = 0.15 \sigma_F \]

- em peças de secção I e caixão,
 \[\bar{\sigma}_f = 0.15 \sigma_F (0.5 + 0.5\beta) \]

sendo: \(\beta = \frac{y}{b} - \frac{bo}{b} + \frac{bo}{b} \)
\[\gamma = \text{função da relação } \frac{d}{d_0}, \text{ dada na tabela 1 da NBR 7190} \]

- \[b = \text{largura da mesa comprimida da viga de seção composta} \]
- \[d_0 = \text{largura da alma da viga I ou a soma das larguras das almas de uma viga caixão} \]
- \[d = \text{altura total da seção transversal das viga de seção composta} \]
- \[d_0 = \text{espessura da mesa comprimida} \]
- \[\sigma_f = \text{limite de resistência da madeira verde na flexão simples} \]

No item 55, estabelece que as tensões de tração na borda tracionada nas peças solicitadas à flexão simples não devem ultrapassar \(\tilde{\sigma}_t = 0,15 \sigma_f \).

No item 59, comentários sobre as tensões de cisalhamento paralelas às fibras. Nas ligações, as tensões não deverão ultrapassar \(\tilde{t} = 0,15 \tilde{t}_w \).

- \(\tilde{t}_w = \text{limite de resistência da madeira verde no cisalhamento paralelo às fibras} \).

No item 66, limita os esforços admissíveis nas ligações no menor dos seguintes valores:
- 50% do limite de proporcionalidade;
- 20% do limite de resistência;
- esforço correspondente ao deslocamento relativo de 1,5mm entre as peças ligadas.

4.3.2 -NORMA PARA CONSTRUCCIONES DE MADERA - CÁLCULO y EJECUCIÓN - DIN 1052 - 1973 (25), essa norma se aplica a todas as partes de construções de madeira e placas de compensado, sempre que não contrarie outras normas.

No item 5.4.1, prescreve que as tensões em
vigas I e T, pregadas com alma contínua, devem ser calculadas em função da rigidez dos elementos de solidarização, segundo as expressões:

\[\sigma_s = \pm \frac{M}{I_w} \cdot \frac{h_s}{2} \cdot \frac{I_s}{I_{sn}} \]

\[\sigma_1 = \pm \frac{M}{I_w} (\gamma \cdot a_1 \cdot \frac{F_1}{F_{1n}} \pm \frac{h_1}{2} \cdot \frac{l_1}{l_{1n}}) \]

\[\sigma_{a1} = \pm \frac{M}{I_w} \cdot \gamma \cdot a_1 \cdot \frac{F_1}{F_{1n}} \]

\[I_w = \sum_{i=1}^{n} i_i + \gamma \cdot \sum_{i=1}^{n} (F_i \cdot a_i^2) \]

sendo:
- \(M \) = momento fletor
- \(\sigma_s \) = tensão atuante na borda da alma da seção
- \(\sigma_1 \) = tensão atuante na borda da mesa da seção
- \(\sigma_{a1} \) = tensão atuante no centro de gravidade da mesa da seção
- \(h_s \) = altura da alma
- \(a_1 \) = distância do centro de gravidade da seção ao centro de gravidade da mesa comprimida
- \(h_1 \) = espessura da mesa
- \(I_s \) = momento de inércia total da alma da seção
- \(I_{sn} \) = momento de inércia reduzido (em função do tipo de solidarização) na alma da seção
- \(l_1 \) = momento de inércia total da mesa da seção
- \(l_{1n} \) = momento de inércia reduzido (em função do tipo de solidarização empregado) da mesa da seção
- \(I_w \) = momento de inércia total da seção composta
- \(F_1 \) = área total da mesa da seção
- \(F_{1n} \) = área reduzida da mesa da seção
- \(F_i \) = área de cada uma das partes da seção

\[\sum_{i=1}^{n} i_i \] = soma dos momentos de inércia de todas as
seções individuais, referentes a seus eixos de gravidade

ver figura 4.1

\[\gamma = \text{valor de redução do momento de inércia total dado por:} \]

\[\gamma = \frac{1}{1 + k} \]

\[k = \frac{n \cdot E \cdot F_1 \cdot e'}{l^2 C} \quad \text{para seções I e caixão} \]

\[k = \frac{n \cdot E \cdot F_1 \cdot F_2 \cdot e'}{l^2 \cdot (F_1 + F_2) \cdot C} \quad \text{para seções T} \]

sendo:

\(E \) = módulo de elasticidade da madeira

\(F_1 \) = área da seção transversal da mesa da seção

\(F_2 \) = área da seção transversal da alma da seção

\(e' \) = distância média entre os elementos de ligação empregados

\(l \) = distância entre os apoios

\(C \) = módulo de translação do elemento de ligação empregado

No item 5.4.3, prescreve que os meios de união deverão ser calculados considerando o momento de inércia eficaz.

\[\max t_w = \frac{\max Q \cdot \gamma \cdot S_1}{I_w} \]

\[\text{erf} \ e = \frac{n \cdot zul \ N}{\max t_w} \]

\[\max t = \frac{\max Q}{b_r \cdot I_w} \cdot S_2 \quad \text{em seções T} \]

sendo:

\(S_1 \) = momento estático da seção transversal do elemento a se unir, referido ao eixo de
gravidade da seção completa \((S_1 = a_1 . F_1)\)

\(n\) = número de filas de meios de união

\(zul N\) = carga admissível do meio de união

\(b_2\) = espessura da alma da seção T

\(S_2\) = momento estático da parte da alma que se encontra abaixo da linha neutra em relação a linha neutra

\(\text{max } tw\) = fluxo máximo de cisalhamento

\(erf e\) = distância necessária dos meios de união

\(\text{max } \tau\) = máxima tensão de cisalhamento no eixo de gravidade da seção transversal total

Fig. 4.1 - Distribuição de tensões
No item 10.1, prescreve que, no cálculo da flecha para vigas compostas, deve ser usado o momento de inércia eficaz.

No item 11.4 dispõe sobre uniões com parafusos.

A penetração na segunda peça deverá ser maior ou igual a oito vezes o diâmetro do parafuso.

A pré-furação para a parte rosqueada deve ter diâmetro igual a 70% do diâmetro do parafuso e, para o fuste liso, deve ter o mesmo diâmetro do parafuso.

No item 12.1.3, prescreve que todos os meios de união devem ser dispostos simetricamente ao eixo da barra, na direção das fibras, combinados mutuamente para evitar afrouxamento simultâneo.

4.3.3 - NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION - RECOMMENDED PRACTICE FOR STRUCTURAL DESIGN BY NATIONAL FOREST PRODUCTS ASSOCIATION - 1986 - (26), essa norma regulamenta o projeto de estruturas de madeira maciça serrada, madeira laminada colada e madeira rolha.

Para viga de seção composta não há referência específica de critérios de cálculo. O item 3.1.5, diz que, para construções envolvendo a composição de materiais como madeira-concreto, madeira-aco e madeira-chapas de compensado, as vigas deverão ser projetadas de acordo com a prática na engenharia.

Para conectores, prescreve, em seu item 8.6.2, para juntas com parafusos auto-atarraxantes longos, que espaçamentos, distâncias a extremidades e distâncias as arestas devem ser suficientes para desenvolver a
resistência plena de cada parafuso.

No item 8.6.4, diz que parafusos autoatarraxantes longos devem ser inseridos em furos prévios.

No item 8.6.5, recomenda que o parafuso deve ser inserido por torção com uma chave, não por marteladas. Diz também que pode ser usado lubrificante para facilitar a inserção e prevenir danos aos parafusos.

4.3.4 - COMMON UNIFIED RULES FOR TIMBER STRUCTURES - EUROCODE nº 5 - 1988 (27), prevê os princípios para projeto de estruturas de madeira sólida e laminada colada.

No item 5.2.4, faz recomendações sobre barras estruturais de secções compostas, ligadas mecanicamente.

No item 5.3.7, comenta sobre o uso de parafuso em juntas de madeira com madeira, recomendando pre-furação, comprimento do fuste liso e penetração do parafuso na segunda peça.

No item 6.4, faz considerações sobre diâmetro e profundidade do furo guia e colocação do parafuso, que nunca deverá ser por martelada e sim por torção.

4.4. Módulo de Elasticidade

HEARMON (28), em um dos primeiros trabalhos experimentais com madeira, para determinar parâmetros elásticos, apresenta um histórico a respeito do estudo cujo
resumo no tocante a módulo de elasticidade (E) é o seguinte:

- Hagem, em 1842, observou considerável diferença entre módulo de elasticidade quando calculado em diferentes direções.

- Em 1845, Laccinotti e Levi observaram uma relação entre o módulo de elasticidade e densidade.

- Estudos paralelos de Lamarle levaram-no a concluir que o módulo de elasticidade à tração e compressão apresentava o mesmo valor: concluiu, também, que o ensaio de flexão simples era um método conveniente e preciso na determinação do módulo de elasticidade. Verificou, ainda, que o módulo de elasticidade dependia da umidade ambiente e da posição do corpo de prova na árvore.

- Chevandier e Wethelm, em 1848, apresentaram uma expressão empírica para a determinação do módulo de elasticidade em função do teor de umidade.

- St. Venant, entre 1864 e 1883, apresentou alguns estudos teóricos sobre o comportamento da madeira e percebeu a necessidade de experimentos para a determinação de parâmetros elásticos.

- Griffith e Wigley, em 1918, apresentaram resultados obtidos experimentalmente, relativos ao módulo de elasticidade longitudinal e módulo de elasticidade transversal.

MARCH, KUENZI e KOMMERS (29), em 1942, pela primeira vez, tentaram sistematizar os ensaios para a determinação do módulo de elasticidade transversal da madeira.
HEARMON (30), em 1948, publicou trabalho onde comparou a elasticidade da madeira com a das chapas de madeira compensada.

NEWLM e TRAYER (31), em 1956, testaram vigas l. caixa, retangular e i com alma dupla, várias vezes, com diferentes vãos. As vigas foram feitas com alma de compensado e flanges de madeira maciça, ou com toda a seção de madeira maciça. Verificou-se que consideráveis erros podem ser introduzidos na determinação da distorção de uma viga, se for negligenciada a deformação devida ao cisalhamento, principalmente se a relação vão/altura (l/h) for pequena ou a viga apresentar alma fina. Vários testes mostraram que, aumentando o vão, diminui-se o erro. Para pequenos vãos, o erro aumenta rapidamente com a redução do mesmo. Para vigas sólidas, com l/h variando de 12 a 28, o erro é de aproximadamente 5%.

NORRIS e McKINNON (32), em 1956, determinaram os parâmetros físicos de resistência e de elasticidade de painéis de madeira compensada.

BEGHTEL e NORRIS (33), em 1959, estudaram a variação de algumas propriedades mecânicas da madeira, variando a relação vão/altura da peça.

NORRIS (34), em 1962, apresentou sua formulação sobre o comportamento de materiais ortrotôpicos, entre eles a madeira, baseando-se na teoria de Henky e Von Mises.

BOLZA e KLOOT (35), em 1963, publicaram dados relativos às propriedades mecânicas de ensaios em 174 espécies de madeiras australianas, de acordo com métodos norte-americanos e britânicos.
JOHNSON (36), em 1965, tentou estabelecer relação entre módulo de elasticidade e tensão de ruptura na compressão paralela às fibras.

CORDER (37), em 1965, baseando-se nos estudos de Johnson, comenta a necessidade de se conhecer as propriedades elásticas da madeira para possibilitar a previsão da configuração da linha elástica, quer de um elemento, quer de uma estrutura como um todo.

HELLMEISTER (38), em 1965, apresentou resultados de tensões de ruptura e de módulo de elasticidade à tração paralela, obtidos em um tipo de corpo de prova proposto para ensaios de tração paralela às fibras.

ETHINGTON e HIBRAND (39), em 1966, admitiram que a madeira é um material ortrotópico.

MARCH (40), logo a seguir, tratou do problema sob o ponto de vista matemático, deduzindo equações a partir da teoria da elasticidade, para a determinação das propriedades elásticas da madeira.

KOLLMANN e CÔTÉ (41), em 1968, comentaram a possibilidade de valores aproximadamente iguais para os módulos de elasticidade à tração, à compressão e à flexão.

GUNNERSON, GOODMAN e BODIG (42), em 1971, na determinação de parâmetros elásticos da madeira, a partir de ensaios de placas, chegaram a resultados estatisticamente dispersos, devidos às modificações sugeridas para a obtenção do coeficiente de Poisson nos planos principais da madeira.

HELLMEISTER (43), em 1973, apresentou resultados do módulo de elasticidade, a partir de ensaios
de compressão realizados em madeiras nacionais, variando a inclinação das fibras em relação à direção de aplicação da carga, para comprovar a validade da equação de Hankinson para a variação do módulo de elasticidade.

FOUDJET (44), em 1980, apresentou trabalho acerca dos métodos de caracterização de materiais anisotrópicos, com referência à sua aplicação à madeira.

SEICHEPINE (45), em 1980, publicou trabalho acerca da determinação da matriz "tensor - elástico" para materiais anisotrópicos, com aplicação particular para madeira.

ROCCO LAHR (46), em 1983, apresentou expressão obtida através de resultados experimentais para relacionar o módulo de elasticidade, chamado de aparente, e obtido em ensaios de flexão com a relação vão/altura (l/h) = 14 e o módulo de elasticidade real, obtido com peças cuja relação l/h era igual a 21. Como complemento deste trabalho, apresenta também uma análise estatística dos valores do módulo de elasticidade, obtidos em ensaios de compressão e em ensaios de flexão com l/h = 21, e concluiu que os mesmos são equivalentes estatisticamente.

CHAHUD (47), em 1985, apresentou um modelo de corpo-de-prova, como proposta para determinação do módulo de elasticidade em ensaios de tração com carga na direção paralela às fibras, e concluiu que o referido parâmetro apresenta uma distribuição normal de frequência para os valores experimentais.

MASCIA (48), em 1985, apresentou resultados experimentais de ensaios em peças com a relação l/h = 21, com carga aplicada no meio do vão e carga aplicada nos terços do vão e concluiu que os módulos de elasticidade são
estatisticamente equivalentes. Demonstrou, ainda, que o tamanho dos corpos de prova não influi no resultado do módulo de elasticidade à compressão.

CHAHUD (49), em 1989, apresentou resultados de trabalho de pesquisa experimental, onde comparou resultados do módulo de elasticidade, obtidos em ensaios de flexão, compressão e tração para várias espécies de madeira nacionais. Verificou que pode ser admitida a equivalência estatística entre os valores do módulo de elasticidade nos três ensaios. Concluiu ser possível estimar, com precisão, os módulos de elasticidade da madeira, através da realização de apenas um entre os ensaios de flexão, tração paralela às fibras e compressão paralela às fibras.
5. MATERIAIS

5.1. Considerações Iniciais

A parte experimental deste trabalho, descrita a partir do capítulo 6 desta dissertação, foi realizada com os equipamentos do Laboratório de Análise Experimental de Estruturas (LAEES), do Departamento de Engenharia de Estruturas (DEES) da Escola de Engenharia da Universidade Federal de Minas Gerais (EEUFMG).

O equipamento principal utilizado foi um pórtico de aplicação de carga, composto por um macaco hidráulico com capacidade de 200kN, um anel dinamométrico com capacidade de 100kN e um relógio comparador para a determinação da flecha das peças, com curso de 50mm e precisão de 0,01mm.

As figuras 5.1 e 5.2 ilustram o equipamento acima descrito.
5.2. *Espécies de Madeira*

Para a realização deste trabalho, na fabricação da viga composta de madeira, utilizando-se o parafuso como elemento de solidarização, cuja aplicação principal serão as terças de cobertura para grandes vãos, optou-se por uma espécie de madeira de reflorestamento, o *Pinus Elliottii* e por uma espécie de madeira nativa, a *Castanheira*.

O *Pinus Elliottii* está sendo utilizado, a nível nacional, em estruturas pré-fabricadas de madeira para coberturas. Apesar de ser uma espécie de madeira que apresenta muitos defeitos (nós por exemplo) e baixa resistência quando comparada às espécies antes utilizadas.

A obtenção do *Pinus Elliottii* é facilitada, devido a sua utilização em reflorestamento, por ser uma espécie que se adaptou muito bem ao clima nacional e apresentar um rápido crescimento.

A *Castanheira*, hoje em esgotamento no Brasil, apresenta alta resistência mecânica, alto índice de homogeneidade e um excelente comportamento estrutural, o que justifica a escolha dessa espécie para o desenvolvimento do presente trabalho.

5.3. *Dimensões das Peças*

Um dos objetivos deste trabalho é a utilização de peças com bitolas comerciais, visando a um
melhor aproveitamento do material encontrado no mercado.

Em função do exposto, as dimensões das vigas em seção T devem manter aproximadamente as seguintes proporções:

\[
\begin{align*}
ba &= 2hm \\
bm &= ha \\
l/h &> 21, para minorar a influência de deformações cisalhantes na flecha total da viga.
\end{align*}
\]

onde: \(ba\) = largura da alma \\
\(bm\) = largura da mesa \\
\(ha\) = altura da alma \\
\(hm\) = altura da mesa \\
\(h\) = altura total da seção T \\
\(l\) = vão livre da viga

Obedecendo-se a estas proporções, o perfil T apresentará uma seção transversal composta de uma alma com as dimensões de uma peça comercial e uma mesa com dimensões resultantes do desdobro de uma viga de dimensões iguais às da alma.

A figura 5.3 mostra esquematicamente a seção composta T.

5.4. **Tipo de Parafuso**

Na escolha do parafuso, procurou-se aquele fabricante que, além de oferecer mais dados técnicos do seu material, oferecia também as bitolas e tamanhos necessários para a composição das vigas.
Entre outros, o parafuso deveria atender aos seguintes requisitos:

- diâmetro, respeitando a relação λ entre a menor espessura da madeira e diâmetro do parafuso, segundo Stamato (50).

$$4 \leq \lambda \leq 6$$

- comprimento, segundo o que prescreve a DIN 1052, item 11.4.1 (51) e Eurocode nº 5 item 5.3.7 (52), o fuste liso do parafuso deve ter comprimento maior ou igual à espessura da primeira peça de madeira;
a penetração do parafuso, na peça do lado da ponta, não deve ser inferior a oito vezes seu diâmetro, segundo o que prescreve a DIN 1052 item 11.4.1 (53).

O parafuso adotado para este trabalho foi o Parafuso para Madeira da Mitto, fabricado com aço baixo carbono, acabamento zincado, fabricado pela Michelletto Minas LTDA. As medidas e tolerâncias de fabricação satisfazem à norma ANSI B 18.6.1 de 1969. Foi utilizado o parafuso de cabeça chata, para se ter um melhor acabamento.

Os parafusos utilizados apresentaram as características contidas no relatório fornecido pelo fabricante, conforme anexo 1.

Fig. 5.4 - Parafuso utilizado
6. ENSAIOS PRELIMINARES

Para cada elemento utilizado na composição da viga T (alma e mesa), foi executado um ensaio de flexão estática para a determinação do módulo de elasticidade longitudinal da peça de madeira.

Este ensaio foi conduzido na faixa elástica de solicitação, não se atingindo, em nenhum momento, o limite de proporcionalidade do material.

A face superior de cada peça foi marcada e, posteriormente, na montagem da viga composta T, isto foi obedecido tanto para a alma quanto para a mesa, evitando assim comportamento da peça isolada diferente do comportamento da viga de seção composta.

6.1 Preparo dos Corpos de Prova

Quando se decidiu pela realização deste estudo, pensou-se, imediatamente no corpo-de-prova a ser ensaiado e concluiu-se que deveria sempre racionalizar mão-de-obra no preparo das peças, ou seja, utilizando-se, dentro do possível, a madeira encontrada nas madeireiras. Em momento algum preocupou-se em ter um fino acabamento nas peças, deixando-as, assim bem próximas da realidade de nossas obras.

Os corpos-de-prova foram construídos em escala reduzida e dimensões bastante próximas daquelas mencionadas no item 5.3.
As máquinas utilizadas no preparo das peças não serão aqui descritas por se tratar daquelas bastante conhecidas, encontradas em praticamente todas as oficinas de carpintaria, tais como:

Serra de Fita
Serra Circular
Tupia
Plaina

A plaina foi utilizada apenas para maior aproximação das dimensões desejadas.
Depois de preparadas as peças, elas continuaram estocadas na oficina do LAEES, com umidade e temperatura ambiente.
As dimensões das peças estão mostradas nas tabelas que seguem.
<table>
<thead>
<tr>
<th>mesa</th>
<th>bh (cm)</th>
<th>hm (cm)</th>
<th>l (cm)</th>
<th>l (cm4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M01</td>
<td>8,90</td>
<td>3,10</td>
<td>240,00</td>
<td>22,10</td>
</tr>
<tr>
<td>M02</td>
<td>8,90</td>
<td>3,10</td>
<td>240,00</td>
<td>22,10</td>
</tr>
<tr>
<td>M03</td>
<td>8,95</td>
<td>3,10</td>
<td>240,00</td>
<td>22,22</td>
</tr>
<tr>
<td>M04</td>
<td>8,90</td>
<td>3,10</td>
<td>240,00</td>
<td>22,10</td>
</tr>
<tr>
<td>M05</td>
<td>8,90</td>
<td>3,10</td>
<td>240,00</td>
<td>22,10</td>
</tr>
<tr>
<td>M06</td>
<td>8,90</td>
<td>3,10</td>
<td>240,00</td>
<td>22,10</td>
</tr>
</tbody>
</table>

Tabela 6.1 - Dimensões das mesas de Pinus Elliottii

<table>
<thead>
<tr>
<th>mesa</th>
<th>bh (cm)</th>
<th>hm (cm)</th>
<th>l (cm)</th>
<th>l (cm4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M07</td>
<td>5,00</td>
<td>1,50</td>
<td>140,00</td>
<td>1,41</td>
</tr>
<tr>
<td>M08</td>
<td>5,10</td>
<td>1,60</td>
<td>140,00</td>
<td>1,74</td>
</tr>
<tr>
<td>M09</td>
<td>5,00</td>
<td>1,50</td>
<td>140,00</td>
<td>1,41</td>
</tr>
<tr>
<td>M10</td>
<td>5,00</td>
<td>1,60</td>
<td>140,00</td>
<td>1,71</td>
</tr>
<tr>
<td>M11</td>
<td>6,90</td>
<td>1,50</td>
<td>175,00</td>
<td>1,94</td>
</tr>
<tr>
<td>M12</td>
<td>6,90</td>
<td>1,50</td>
<td>175,00</td>
<td>1,94</td>
</tr>
<tr>
<td>M13</td>
<td>13,80</td>
<td>3,00</td>
<td>400,00</td>
<td>31,05</td>
</tr>
</tbody>
</table>

Tabela 6.2 - Dimensões das mesas de Castanheira
<table>
<thead>
<tr>
<th>mesa</th>
<th>h_A (cm)</th>
<th>h_A (cm)</th>
<th>l (cm)</th>
<th>I (cm4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>5.75</td>
<td>8.30</td>
<td>240.00</td>
<td>273.98</td>
</tr>
<tr>
<td>A02</td>
<td>6.00</td>
<td>8.30</td>
<td>240.00</td>
<td>285.89</td>
</tr>
<tr>
<td>A03</td>
<td>6.00</td>
<td>8.30</td>
<td>240.00</td>
<td>285.89</td>
</tr>
<tr>
<td>A04</td>
<td>5.75</td>
<td>8.30</td>
<td>240.00</td>
<td>273.98</td>
</tr>
<tr>
<td>A05</td>
<td>5.30</td>
<td>8.30</td>
<td>240.00</td>
<td>276.36</td>
</tr>
<tr>
<td>A06</td>
<td>6.00</td>
<td>8.30</td>
<td>240.00</td>
<td>285.89</td>
</tr>
</tbody>
</table>

Tabela 6.3 - Dimensões das almas de Pinus Elliottii

<table>
<thead>
<tr>
<th>alma</th>
<th>h_A (cm)</th>
<th>h_A (cm)</th>
<th>l (cm)</th>
<th>I (cm4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A07</td>
<td>2.50</td>
<td>5.00</td>
<td>140.00</td>
<td>26.04</td>
</tr>
<tr>
<td>A08</td>
<td>2.50</td>
<td>5.00</td>
<td>140.00</td>
<td>26.04</td>
</tr>
<tr>
<td>A09</td>
<td>2.40</td>
<td>5.00</td>
<td>140.00</td>
<td>25.00</td>
</tr>
<tr>
<td>A10</td>
<td>2.50</td>
<td>5.00</td>
<td>140.00</td>
<td>26.04</td>
</tr>
<tr>
<td>A11</td>
<td>3.50</td>
<td>6.90</td>
<td>175.00</td>
<td>95.82</td>
</tr>
<tr>
<td>A12</td>
<td>3.50</td>
<td>6.90</td>
<td>175.00</td>
<td>95.82</td>
</tr>
<tr>
<td>A13</td>
<td>6.00</td>
<td>14.00</td>
<td>400.00</td>
<td>1372.00</td>
</tr>
</tbody>
</table>

Tabela 6.4 - Dimensões das almas de Castanheira
6.2. Realização dos Ensaios Preliminares

Para o ensaio das peças à flexão estática, foram montadas vigas biapoiadas com aplicação de carga concentrada no meio do vão, para cada elemento de almea e mesa, respeitando-se sempre a face superior marcada anteriormente.

A figura 6.1 ilustra o ensaio

Fig. 6.1. Esquema da viga bi-apoioada
O módulo de elasticidade longitudinal foi determinado por:
\[v = \frac{P l^3}{48EI} \], donde: \(E = \frac{P l^3}{48Iv} \)

sendo:
- \(P \) = carga aplicada
- \(l \) = vão da viga
- \(I \) = momento de inércia da seção transversal da peça
- \(v \) = flecha no meio do vão da viga devida à carga \(P \)
- \(E \) = módulo de elasticidade longitudinal da madeira

Para cada variação da carga aplicada, foi realizada uma leitura da flecha e calculado o valor de \(E_i \). Depois de \(n \) leituras, determinou-se o módulo de elasticidade longitudinal da madeira \(E \), pela média dos \(n \) valores calculados de \(E_i \).

Para cada peça ensaiada, aplicou-se dois ciclos de carregamento, obtendo-se, portanto, dois valores de flecha para cada carga aplicada. O valor da flecha considerado foi a média dos dois valores correspondentes a uma mesma carga. Foi observado que retirando-se o carregamento da viga, não houve deformação residual, ou seja, voltou a posição inicial.

A seguir serão apresentadas algumas tabelas, a título de ilustração. Os valores de \(I_A \) e \(I_M \) foram extraídos das tabelas 6.1 e 6.3.
<table>
<thead>
<tr>
<th>\mathbf{P} (N)</th>
<th>$\Delta \mathbf{P}$ (N)</th>
<th>\mathbf{v}_1 (mm)</th>
<th>\mathbf{v}_2 (mm)</th>
<th>$\bar{\mathbf{v}}$ (mm)</th>
<th>$\Delta \mathbf{v}$ (mm)</th>
<th>$\mathbf{E}_\mathbf{A}_i$ (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>242.60</td>
<td>242.60</td>
<td>4.57</td>
<td>4.49</td>
<td>4.53</td>
<td>4.53</td>
<td>5629</td>
</tr>
<tr>
<td>485.20</td>
<td>242.60</td>
<td>7.34</td>
<td>7.30</td>
<td>7.32</td>
<td>2.79</td>
<td>9140</td>
</tr>
<tr>
<td>727.80</td>
<td>242.60</td>
<td>10.33</td>
<td>10.31</td>
<td>10.32</td>
<td>3.00</td>
<td>8500</td>
</tr>
<tr>
<td>970.40</td>
<td>242.60</td>
<td>13.28</td>
<td>13.26</td>
<td>13.27</td>
<td>2.95</td>
<td>8645</td>
</tr>
<tr>
<td>1213.00</td>
<td>242.60</td>
<td>16.49</td>
<td>16.51</td>
<td>16.50</td>
<td>3.23</td>
<td>7895</td>
</tr>
</tbody>
</table>

$\mathbf{E}_\mathbf{A} = \frac{\Sigma \mathbf{E}_\mathbf{A}_i}{5}$

$\Sigma \mathbf{E}_\mathbf{A}_i = 39810$

$\mathbf{E}_\mathbf{A} = 7962$ MPa

Tabela 6.5 - Cálculo de $\mathbf{E}_\mathbf{A}$ - Peça A01
<table>
<thead>
<tr>
<th>P (N)</th>
<th>ΔP (N)</th>
<th>v₁ (mm)</th>
<th>v₂ (mm)</th>
<th>.defaultValue</th>
<th>Δv (mm)</th>
<th>Eₘᵢ (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.800</td>
<td>5.800</td>
<td>1.13</td>
<td>1.03</td>
<td>1.08</td>
<td>1.08</td>
<td>6998</td>
</tr>
<tr>
<td>11.599</td>
<td>5.803</td>
<td>2.35</td>
<td>2.25</td>
<td>2.30</td>
<td>1.22</td>
<td>6199</td>
</tr>
<tr>
<td>17.404</td>
<td>5.805</td>
<td>3.58</td>
<td>3.52</td>
<td>3.55</td>
<td>1.25</td>
<td>6052</td>
</tr>
<tr>
<td>23.203</td>
<td>5.799</td>
<td>4.81</td>
<td>4.75</td>
<td>4.78</td>
<td>1.23</td>
<td>6144</td>
</tr>
<tr>
<td>29.026</td>
<td>5.823</td>
<td>6.10</td>
<td>6.06</td>
<td>6.08</td>
<td>1.30</td>
<td>5837</td>
</tr>
<tr>
<td>34.856</td>
<td>5.830</td>
<td>7.33</td>
<td>7.29</td>
<td>7.31</td>
<td>1.23</td>
<td>6177</td>
</tr>
<tr>
<td>40.663</td>
<td>5.807</td>
<td>8.59</td>
<td>8.57</td>
<td>8.58</td>
<td>1.27</td>
<td>5959</td>
</tr>
<tr>
<td>46.475</td>
<td>5.812</td>
<td>9.83</td>
<td>9.85</td>
<td>9.84</td>
<td>1.26</td>
<td>6011</td>
</tr>
</tbody>
</table>

Eₘᵢ = ΣEₘᵢ/₈
Eₘ = 6172 MPa

ΣEₘᵢ = 49377

Tabela 6.6 - Cálculo de Eₘ - Peça M01

Para as peças de alma, foi aplicado um carregamento perpendicular ao eixo de maior inércia, utilizando-se o esquema das figuras 6.2 e 6.3.
Fig. 6.2 - Esquema de aplicação do corgo no elemento de olma

Fig. 6.3 - ensaio do elemento de olma
Para as peças de mesa, o carregamento foi aplicado perpendicular ao eixo de menor inércia. Ver figuras 6.4 e 6.5. Como estas eram muito esbeltas e deformavam-se com pequenas cargas, realizou-se este ensaio aplicando cargas manualmente, pois uma divisão no sistema de carregamento é de 242,60N, o que já ultrapassa a maior carga aplicada.

Os ensaios apresentaram gráficos carga X flecha, como os das figuras 6.6 e 6.7, mostrando um comportamento linear conforme as hipóteses adotadas ao se calcular a flecha como \(v = \frac{P l^3}{48EI} \).
Fig. 6.5a - Ensaio do elemento de mesa

Fig. 6.5b - Detalhe da face superior
fig. 6.7
6.3. Apresentação dos Resultados

<table>
<thead>
<tr>
<th>mesa</th>
<th>bm (cm)</th>
<th>hm (cm)</th>
<th>Im (cm4)</th>
<th>EM (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M01</td>
<td>8.90</td>
<td>3.10</td>
<td>22.10</td>
<td>6172</td>
</tr>
<tr>
<td>M02</td>
<td>8.90</td>
<td>3.10</td>
<td>22.10</td>
<td>8122</td>
</tr>
<tr>
<td>M03</td>
<td>8.95</td>
<td>3.10</td>
<td>22.22</td>
<td>8989</td>
</tr>
<tr>
<td>M04</td>
<td>8.90</td>
<td>3.10</td>
<td>22.10</td>
<td>5120</td>
</tr>
<tr>
<td>M05</td>
<td>8.90</td>
<td>3.10</td>
<td>22.10</td>
<td>3896</td>
</tr>
<tr>
<td>M06</td>
<td>8.90</td>
<td>3.10</td>
<td>22.10</td>
<td>6241</td>
</tr>
</tbody>
</table>

Tabela 6.7 - Valores de EM - Mesas de Pinus Elliottii
<table>
<thead>
<tr>
<th>alma</th>
<th>hA (cm)</th>
<th>hA (cm)</th>
<th>I A (cm4)</th>
<th>E A (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>5.75</td>
<td>8.30</td>
<td>273.98</td>
<td>7962</td>
</tr>
<tr>
<td>A02</td>
<td>6.00</td>
<td>8.30</td>
<td>285.89</td>
<td>4710</td>
</tr>
<tr>
<td>A03</td>
<td>6.00</td>
<td>8.30</td>
<td>285.89</td>
<td>6977</td>
</tr>
<tr>
<td>A04</td>
<td>5.75</td>
<td>8.30</td>
<td>273.98</td>
<td>4833</td>
</tr>
<tr>
<td>A05</td>
<td>5.80</td>
<td>8.30</td>
<td>276.97</td>
<td>7514</td>
</tr>
<tr>
<td>A06</td>
<td>6.00</td>
<td>8.30</td>
<td>285.89</td>
<td>4916</td>
</tr>
</tbody>
</table>

Tabela 6.8 - Valores de E A - Almas de Pinus Elliottii
<table>
<thead>
<tr>
<th>mesa</th>
<th>bm</th>
<th>hm</th>
<th>Im</th>
<th>Em</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(cm)</td>
<td>(cm)</td>
<td>(cm(^4))</td>
<td>(MPa)</td>
</tr>
<tr>
<td>M07</td>
<td>5.00</td>
<td>1.50</td>
<td>1.41</td>
<td>22060</td>
</tr>
<tr>
<td>M08</td>
<td>5.10</td>
<td>1.60</td>
<td>1.74</td>
<td>13834</td>
</tr>
<tr>
<td>M09</td>
<td>5.00</td>
<td>1.50</td>
<td>1.41</td>
<td>23207</td>
</tr>
<tr>
<td>M10</td>
<td>5.00</td>
<td>1.60</td>
<td>1.71</td>
<td>12255</td>
</tr>
<tr>
<td>M11</td>
<td>6.90</td>
<td>1.50</td>
<td>1.94</td>
<td>15093</td>
</tr>
<tr>
<td>M12</td>
<td>6.90</td>
<td>1.50</td>
<td>1.94</td>
<td>15214</td>
</tr>
<tr>
<td>M13</td>
<td>13.80</td>
<td>3.00</td>
<td>91.05</td>
<td>15245</td>
</tr>
</tbody>
</table>

Tabela 6.9 - Valores de Em - Mesas de Castanheira
<table>
<thead>
<tr>
<th>alma</th>
<th>bM (cm)</th>
<th>hM (cm)</th>
<th>IM (cm4)</th>
<th>EA (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A07</td>
<td>2.50</td>
<td>5.00</td>
<td>26.04</td>
<td>14313</td>
</tr>
<tr>
<td>A08</td>
<td>2.50</td>
<td>5.00</td>
<td>26.04</td>
<td>16475</td>
</tr>
<tr>
<td>A09</td>
<td>2.40</td>
<td>5.00</td>
<td>25.00</td>
<td>11956</td>
</tr>
<tr>
<td>A10</td>
<td>2.50</td>
<td>5.00</td>
<td>26.04</td>
<td>12559</td>
</tr>
<tr>
<td>A11</td>
<td>3.50</td>
<td>6.90</td>
<td>95.82</td>
<td>11921</td>
</tr>
<tr>
<td>A12</td>
<td>3.50</td>
<td>6.90</td>
<td>95.82</td>
<td>19211</td>
</tr>
<tr>
<td>A13</td>
<td>6.00</td>
<td>14.00</td>
<td>1372.00</td>
<td>12459</td>
</tr>
</tbody>
</table>

Tabela 6.10 - Valores de EA - Almas de Castanheira
7. MONTAGEM DAS VIGAS

A ideia inicial para o desenvolvimento deste trabalho inclui a montagem de vigas de seção composta T. Os elementos de alça e mesa foram preparados conforme descrito nos capítulos anteriores. Após a montagem as vigas de seção T apresentaram sempre a relação $l/h \geq 21$.

O resumo das características geométricas das vigas T será apresentado a seguir.

<table>
<thead>
<tr>
<th>viga</th>
<th>b_m (cm)</th>
<th>h_m (cm)</th>
<th>b_A (cm)</th>
<th>h_A (cm)</th>
<th>I_m (cm4)</th>
<th>I_A (cm4)</th>
<th>y (cm)</th>
<th>l (cm4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V01</td>
<td>8.90</td>
<td>3.10</td>
<td>5.75</td>
<td>8.30</td>
<td>382.05</td>
<td>482.05</td>
<td>6.24</td>
<td>864.10</td>
</tr>
<tr>
<td>V02</td>
<td>8.90</td>
<td>3.10</td>
<td>6.00</td>
<td>8.30</td>
<td>393.30</td>
<td>491.52</td>
<td>6.18</td>
<td>884.81</td>
</tr>
<tr>
<td>V03</td>
<td>8.95</td>
<td>3.10</td>
<td>6.00</td>
<td>8.30</td>
<td>394.08</td>
<td>492.93</td>
<td>6.19</td>
<td>887.02</td>
</tr>
<tr>
<td>V04</td>
<td>8.90</td>
<td>3.10</td>
<td>5.75</td>
<td>8.30</td>
<td>382.05</td>
<td>482.05</td>
<td>6.24</td>
<td>884.10</td>
</tr>
<tr>
<td>V05</td>
<td>8.90</td>
<td>3.10</td>
<td>5.80</td>
<td>8.30</td>
<td>384.24</td>
<td>484.03</td>
<td>6.23</td>
<td>868.28</td>
</tr>
<tr>
<td>V06</td>
<td>8.90</td>
<td>3.10</td>
<td>6.00</td>
<td>8.30</td>
<td>393.30</td>
<td>491.52</td>
<td>6.18</td>
<td>884.81</td>
</tr>
</tbody>
</table>

Tabela 7.1 Vigas de Pinus Elliottii
<table>
<thead>
<tr>
<th>Viga</th>
<th>b (cm)</th>
<th>h (cm)</th>
<th>bA (cm)</th>
<th>hA (cm)</th>
<th>IM (cm^4)</th>
<th>IA (cm^4)</th>
<th>y (cm)</th>
<th>IT (cm^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V07</td>
<td>5.00</td>
<td>1.50</td>
<td>2.50</td>
<td>5.00</td>
<td>32.34</td>
<td>44.62</td>
<td>3.72</td>
<td>76.96</td>
</tr>
<tr>
<td>V08</td>
<td>5.10</td>
<td>1.60</td>
<td>2.50</td>
<td>5.00</td>
<td>34.28</td>
<td>47.26</td>
<td>3.80</td>
<td>81.55</td>
</tr>
<tr>
<td>V09</td>
<td>5.00</td>
<td>1.50</td>
<td>2.40</td>
<td>5.00</td>
<td>31.41</td>
<td>43.75</td>
<td>3.75</td>
<td>75.16</td>
</tr>
<tr>
<td>V10</td>
<td>5.00</td>
<td>1.60</td>
<td>2.50</td>
<td>5.00</td>
<td>34.13</td>
<td>46.78</td>
<td>3.79</td>
<td>80.90</td>
</tr>
<tr>
<td>V11</td>
<td>6.90</td>
<td>1.5</td>
<td>3.50</td>
<td>6.90</td>
<td>91.40</td>
<td>134.16</td>
<td>4.71</td>
<td>225.56</td>
</tr>
<tr>
<td>V12</td>
<td>6.90</td>
<td>1.50</td>
<td>3.50</td>
<td>6.90</td>
<td>91.40</td>
<td>134.16</td>
<td>4.71</td>
<td>225.56</td>
</tr>
<tr>
<td>V13</td>
<td>13.80</td>
<td>3.00</td>
<td>6.00</td>
<td>14.00</td>
<td>1371.42</td>
<td>2035.27</td>
<td>9.81</td>
<td>3406.69</td>
</tr>
</tbody>
</table>

Tabela 7.2 Vigas de Castanheira

Na realização desta etapa dos trabalhos foi observada toda uma sequência de execução, pois, de uma certa forma, o sucesso da experimentação está relacionado em muito com a perfeição na montagem das vigas compostas de seção T.

7.1. Furacão

Para a colocação dos parafusos, as peças foram previamente furadas, obedecendo-se às instruções do fabricante, ao que recomenda Newlin e Gahagan (1938) (54) e às prescrições da NBR 7190 (1951) (55).
a- Os parafusos devem ser simetricamente dispostos em relação ao eixo da peça, reduzindo assim o risco de um plano preferencial de fendilhamento da madeira. NBR 7190 (56)

Fig. 7.1 - Simetria dos parafusos

b- Espaçamento mínimo de centro a centro de parafusos, em uma mesma linha paralela às fibras, deve ser de 4 vezes o seu diâmetro. NBR 7190 (57).

Fig. 7.2 - Espaçamento entre parafusos
c- A distância mínima do centro de um parafuso à extremidade da peça na direção paralela às fibras na compressão deve ser de 4 vezes seu diâmetro. NBR 7190 (58)

![Fig. 7.3 - Distância do parafuso à borda](image)

d- A distância, medida perpendicularmente às fibras, do centro de um parafuso à aresta da peça, deve ser maior ou igual a 1,5 vezes o diâmetro do parafuso se o esforço for paralelo às fibras. NBR 7190 (59).

![Fig. 7.4 - Distância do parafuso à borda](image)
e- As perfurações para a instalação de parafusos devem ser feitas à máquina, NBR 7190 (60).

g- O furo para o fuste liso deve ter o mesmo diâmetro e a mesma profundidade da parte não rosqueada do parafuso. Eurocode nº 5 (63) e Vaz (1987) (64).

Na montagem das vigas, apenas os três primeiros furos foram executados obedecendo-se aos itens f e g, utilizando-se duas brocas diferentes para o furo de apenas um parafuso. A partir do 3º parafuso, a viga já estava montada e, fazendo-se um primeiro furo para a parte rosqueada, dever-se-ia, em seguida, aumentar seu diâmetro para o fuste liso, o que era bastante trabalhoso. Adotou-se, portanto, a furação com apenas a broca de menor diâmetro, ficando próximo ao que prescreve a DIN 1052 (65).

As figuras 7.5 e 7.6 ilustram o processo de furação.
7.2. Critérios de Montagem

As vigas foram montadas sempre com alma e mesa da mesma espécie de madeira.

No preparo das peças isoladas, as almas e mesas foram numeradas aleatoriamente e, na montagem da viga, foi adotado o critério de se unir sempre mesa e alma de numeração correspondente.

A face superior de um elemento de alma na viga composta foi também a face superior nos ensaios da peça isolada. Mesmo procedimento adotado para o elemento de mesa.

Os parafusos foram escolhidos para cada viga, conforme o disposto no item 5.4.

As vigas foram inicialmente montadas com apenas 3 parafusos, sendo um no meio do vão e um sobre cada apoio. Estas peças foram ensaiadas até um limite inferior ao de elasticidade e depois mais 2 parafusos foram colocados, um no meio de cada intervalo, ficando as peças solidarizadas com 5 parafusos. Novamente ensaiadas, e mais um parafuso no meio de cada intervalo foi colocado. Essa sequência foi mantida até se completar 65 parafusos, número máximo para se respeitar os espaçamentos da NBR 7190 (66).

7.3. Sistema de Parafusamento

Com uma furação prévia nos elementos de alma e mesa separadamente, foram colocados os 3 primeiros parafusos.

A instalação do parafuso, como recomenda o Eurocode nº 5 (67) e Vaz 1987 (68), foi executada por
torção, utilizando-se inicialmente a chave de fenda e, a seguir, a parafusadeira elétrica de baixa rotação.

Fig. 7.7

Fig. 7.8
Após a instalação de \(n \) parafusos a, peça era ensaiada, novamente furada e instalados mais \((n-1)\) parafusos.

Para maior facilidade na instalação do parafuso, foi utilizado um lubrificante (\(\text{cera de abelha} \)), como recomendado por Newlin e Gahagan (69) e Vaz (70).

Não houve perda considerável de parafusos, devido a quebra, espanamento, etc. Essa perda, na fase da montagem, não excedeu a 0,5%.
8. ENSAIOS PRINCIPAIS DAS VIGAS DE SEÇÃO COMPOSTA

8.1. Considerações Iniciais

Conforme descrito no capítulo 7, montaram-se as vigas de seção transversal T, utilizando-se parafusos como elemento de solidarização.

Os ensaios, a seguir descritos, foram realizados através da aplicação de carga no meio do vão das vigas de seção composta. O esquema do ensaio está apresentado na figura 8.1.
Fig. 8.2 - Ensaio da viga

Fig. 8.3 - Ensaio da viga
3.2. Determinação do Momento de Inércia Real \((I_r)\)

Inicialmente, a viga foi ensaiada com 3 parafusos, depois com 5 parafusos, 9, até 65 parafusos. Nesta fase de ensaios, o carregamento aplicado não atingiu o limite de proporcionalidade do material.

Uma viga, ao ser ensaiada, foi carregada e descarregada 3 vezes, e, somente no quarto e quinto carregamentos, as leituras das flechas no ponto central foram consideradas.

O carregamento foi aplicado continuamente, realizando-se leitura da flecha para cada intervalo de 242,60N de variação da carga aplicada. A flecha considerada foi determinada pela média dos valores das duas leituras, nos dois carregamentos aplicados.

A partir dos resultados dos ensaios, determinou-se o valor do momento de inércia real da viga de seção composta, utilizando-se a expressão:

\[
I_r = \frac{P \cdot l^3}{48 \cdot E_T \cdot v}
\]

sendo:
- \(P\) = carga aplicada no meio do vão da viga
- \(l\) = vão livre entre os apoios da viga
- \(E_T\) = módulo de elasticidade da seção composta
- \(v\) = flecha no meio do vão da viga

Para a determinação do momento de inércia real \((I_r)\) tornar-se possível, é necessário o conhecimento do valor do módulo de elasticidade da viga \((E_T)\). Com o valor do módulo de elasticidade de cada elemento (alma e mesa) da viga isoladamente \((E_A\ e \ E_M)\), obtido no capítulo 5, determinou-se o módulo de elasticidade da viga de seção composta \(E_T\).

Utilizou-se o método da homogeneização da seção, para se estimar o valor de \(E_T\), a partir de \(E_A\ e \ E_M\).
através da expressão abaixo:

\[E_T = \frac{EMIM + EAlA}{IT} \]

sendo:
- \(IT \) = momento de inércia da seção \(T \) em relação ao eixo neutro
- \(IM \) = momento de inércia da mesa em relação ao eixo neutro da seção \(T \)
- \(IA \) = momento de inércia da alma em relação ao eixo neutro da seção \(T \)
- \(EA \) = módulo de elasticidade do material da alma
- \(EM \) = módulo de elasticidade do material da mesa
- \(Ef \) = módulo de elasticidade da seção composta \(T \)

Estimado-se \(ET \), foi possível a determinação do momento de inércia real da seção, devido às perdas de eficiência das ligações para os diversos números de parafusos.

As tabelas 8.1 e 8.2 apresentam os valores de \(ET \) para as vigas
<table>
<thead>
<tr>
<th>viga</th>
<th>IM (cm⁴)</th>
<th>IA (cm⁴)</th>
<th>IT (cm⁴)</th>
<th>EM (MPa)</th>
<th>EA (MPa)</th>
<th>ET (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V01</td>
<td>382.05</td>
<td>482.05</td>
<td>864.10</td>
<td>6099</td>
<td>7962</td>
<td>7138</td>
</tr>
<tr>
<td>V02</td>
<td>393.30</td>
<td>491.52</td>
<td>884.81</td>
<td>8122</td>
<td>4710</td>
<td>6248</td>
</tr>
<tr>
<td>V03</td>
<td>394.03</td>
<td>492.93</td>
<td>887.02</td>
<td>3989</td>
<td>6977</td>
<td>7871</td>
</tr>
<tr>
<td>V04</td>
<td>382.05</td>
<td>482.05</td>
<td>884.10</td>
<td>5120</td>
<td>4833</td>
<td>4848</td>
</tr>
<tr>
<td>V05</td>
<td>384.24</td>
<td>484.03</td>
<td>868.28</td>
<td>6241</td>
<td>7514</td>
<td>6950</td>
</tr>
<tr>
<td>V06</td>
<td>393.30</td>
<td>491.52</td>
<td>884.81</td>
<td>3895</td>
<td>4916</td>
<td>4463</td>
</tr>
</tbody>
</table>

Tabela 3.1 Vigas de Pinus Elliottii

<table>
<thead>
<tr>
<th>viga</th>
<th>IM (cm⁴)</th>
<th>IA (cm⁴)</th>
<th>IT (cm⁴)</th>
<th>EM (MPa)</th>
<th>EA (MPa)</th>
<th>ET (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V07</td>
<td>32,34</td>
<td>44,62</td>
<td>76,96</td>
<td>22059</td>
<td>14313</td>
<td>17568</td>
</tr>
<tr>
<td>V08</td>
<td>34,28</td>
<td>47,26</td>
<td>81,55</td>
<td>13834</td>
<td>16475</td>
<td>15363</td>
</tr>
<tr>
<td>V09</td>
<td>31,41</td>
<td>43,75</td>
<td>75,16</td>
<td>23207</td>
<td>11956</td>
<td>16657</td>
</tr>
<tr>
<td>V10</td>
<td>34,13</td>
<td>46,78</td>
<td>80,90</td>
<td>12255</td>
<td>12559</td>
<td>12432</td>
</tr>
<tr>
<td>V11</td>
<td>91,40</td>
<td>134,16</td>
<td>225,56</td>
<td>15094</td>
<td>11921</td>
<td>13207</td>
</tr>
<tr>
<td>V12</td>
<td>91,40</td>
<td>134,16</td>
<td>225,56</td>
<td>15213</td>
<td>13211</td>
<td>14022</td>
</tr>
<tr>
<td>V13</td>
<td>1371,42</td>
<td>2035,27</td>
<td>3406,69</td>
<td>15245</td>
<td>12459</td>
<td>13581</td>
</tr>
</tbody>
</table>

Tabela 3.2 Vigas de Castanheira
O cálculo do valor de I_r foi realizado através da média do I_r correspondente a cada carga aplicada e sua flecha correspondente.

As tabelas 8.3 , 8.4 , 8.5, 8.6, 8.7 e 8.8 exemplificam o cálculo de I_r.

De posse do valor de I_r, calculou-se a eficiência da ligação, a partir da relação I_r/I_0, sendo I_r o momento de inércia da seção composta, considerada sem emendas.

Os gráficos das figuras 8.4 e 8.5 mostram o comportamento das vigas durante os ensaios.
Variação da Flecha com No de parafusos

Fig. 84

FLECHA (mm)

CARGA (N)

- 3 par
- 5 par
- 9 par
- 17 par
- 33 par
- 65 par
Variacao da Flecha com No de parafusos
Viga V03 3 parafusos $E_I = 7871 \text{ MPa} \quad l = 240 \text{ cm}$

<table>
<thead>
<tr>
<th>P_i (N)</th>
<th>ΔP (N)</th>
<th>v_1 (mm)</th>
<th>v_2 (mm)</th>
<th>\bar{v} (mm)</th>
<th>Δv (mm)</th>
<th>I_{ri} (cm4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>242.60</td>
<td>242.60</td>
<td>3.55</td>
<td>4.21</td>
<td>3.88</td>
<td>3.88</td>
<td>228.79</td>
</tr>
<tr>
<td>585.20</td>
<td>242.60</td>
<td>5.25</td>
<td>6.75</td>
<td>6.50</td>
<td>2.62</td>
<td>338.81</td>
</tr>
<tr>
<td>727.80</td>
<td>242.60</td>
<td>3.75</td>
<td>9.64</td>
<td>9.20</td>
<td>2.70</td>
<td>328.78</td>
</tr>
<tr>
<td>970.40</td>
<td>242.60</td>
<td>11.62</td>
<td>12.56</td>
<td>12.09</td>
<td>2.89</td>
<td>307.16</td>
</tr>
<tr>
<td>1213.00</td>
<td>242.60</td>
<td>14.16</td>
<td>15.40</td>
<td>14.78</td>
<td>2.69</td>
<td>330.00</td>
</tr>
<tr>
<td>1455.60</td>
<td>242.60</td>
<td>16.90</td>
<td>18.36</td>
<td>17.63</td>
<td>2.85</td>
<td>311.47</td>
</tr>
<tr>
<td>1698.20</td>
<td>242.60</td>
<td>20.20</td>
<td>21.18</td>
<td>20.69</td>
<td>3.06</td>
<td>290.10</td>
</tr>
<tr>
<td>1940.80</td>
<td>242.60</td>
<td>23.20</td>
<td>23.80</td>
<td>23.50</td>
<td>2.81</td>
<td>315.90</td>
</tr>
<tr>
<td>2183.40</td>
<td>242.60</td>
<td>26.38</td>
<td>26.54</td>
<td>26.46</td>
<td>2.96</td>
<td>299.90</td>
</tr>
<tr>
<td>2426.00</td>
<td>242.60</td>
<td>29.04</td>
<td>29.36</td>
<td>29.20</td>
<td>2.74</td>
<td>323.98</td>
</tr>
</tbody>
</table>

$\Sigma I_{ri} = 3074.89$

$\Sigma I_{ri} = 3074.89$

$1r = \Sigma I_{ri}/10$

$1r = 307.49 \text{ cm}^4$

Tabela 8.3

da Tabela 7.1, temos: $1r = 387.02 \text{ cm}^4$

da Tabela 8.3, temos: $1r = 307.48 \text{ cm}^4$

logo: $1r = 34.65\%$ de $1r$
Tabela 8.4

Da Tabela 7.1, temos: \(\Sigma T = 887.10 \text{ cm}^4 \)

da Tabela 8.4, temos: \(r = 336.77 \text{ cm}^4 \)

logo: \(r = 37.94\% \) de \(\Sigma T \)
Viga V03 9 parafusos $\varepsilon T = 7871$ MPa $l = 240$ cm

<table>
<thead>
<tr>
<th>P_i</th>
<th>ΔP</th>
<th>v_1 (mm)</th>
<th>v_2 (mm)</th>
<th>\bar{v} (mm)</th>
<th>Δv (mm)</th>
<th>I_{ri} (cm4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>242.60</td>
<td>242.60</td>
<td>2.20</td>
<td>2.50</td>
<td>2.35</td>
<td>2.35</td>
<td>377.74</td>
</tr>
<tr>
<td>585.20</td>
<td>242.60</td>
<td>4.30</td>
<td>4.10</td>
<td>4.20</td>
<td>1.85</td>
<td>479.83</td>
</tr>
<tr>
<td>727.80</td>
<td>242.60</td>
<td>6.92</td>
<td>6.50</td>
<td>6.71</td>
<td>2.51</td>
<td>353.66</td>
</tr>
<tr>
<td>970.40</td>
<td>242.60</td>
<td>9.38</td>
<td>9.30</td>
<td>9.34</td>
<td>2.63</td>
<td>337.53</td>
</tr>
<tr>
<td>1213.00</td>
<td>242.60</td>
<td>11.94</td>
<td>11.60</td>
<td>11.77</td>
<td>2.43</td>
<td>365.31</td>
</tr>
<tr>
<td>1455.60</td>
<td>242.60</td>
<td>14.38</td>
<td>14.08</td>
<td>14.23</td>
<td>2.46</td>
<td>360.85</td>
</tr>
<tr>
<td>1698.20</td>
<td>242.60</td>
<td>17.04</td>
<td>16.64</td>
<td>16.84</td>
<td>2.61</td>
<td>340.11</td>
</tr>
<tr>
<td>1940.80</td>
<td>242.60</td>
<td>19.94</td>
<td>19.26</td>
<td>19.60</td>
<td>2.76</td>
<td>321.63</td>
</tr>
<tr>
<td>2183.40</td>
<td>242.60</td>
<td>22.00</td>
<td>21.40</td>
<td>21.70</td>
<td>2.10</td>
<td>422.71</td>
</tr>
<tr>
<td>2426.00</td>
<td>242.60</td>
<td>25.20</td>
<td>23.68</td>
<td>24.44</td>
<td>2.74</td>
<td>323.98</td>
</tr>
</tbody>
</table>

$I_r = \Sigma I_{ri}/10$

$\Sigma I_{ri} = 3683.35$

$I_r = 368.34$ cm4

Tabela 8.5

da Tabela 7.1. temos: $I_T = 887.10$ cm4
da Tabela 8.5. temos: $I_r = 368.34$ cm4

logo: $I_r = 41.53\%$ de I_T
Viga V03 17 parafusos \(E_I = 7871 \text{ MPa} \) \(l = 240 \text{ cm} \)

<table>
<thead>
<tr>
<th>(P_i) (N)</th>
<th>(\Delta P) (N)</th>
<th>(v_1) (mm)</th>
<th>(v_2) (mm)</th>
<th>(\bar{v}) (mm)</th>
<th>(\Delta v) (mm)</th>
<th>(I_{ri}) (cm^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>242.60</td>
<td>242.60</td>
<td>1.96</td>
<td>1.92</td>
<td>1.94</td>
<td>1.94</td>
<td>457.57</td>
</tr>
<tr>
<td>585.20</td>
<td>242.60</td>
<td>3.28</td>
<td>3.04</td>
<td>3.16</td>
<td>1.22</td>
<td>727.62</td>
</tr>
<tr>
<td>727.80</td>
<td>242.60</td>
<td>5.24</td>
<td>4.50</td>
<td>4.87</td>
<td>1.71</td>
<td>519.12</td>
</tr>
<tr>
<td>970.40</td>
<td>242.60</td>
<td>6.84</td>
<td>6.78</td>
<td>6.81</td>
<td>1.94</td>
<td>457.57</td>
</tr>
<tr>
<td>1213.00</td>
<td>242.60</td>
<td>8.90</td>
<td>8.64</td>
<td>8.77</td>
<td>1.96</td>
<td>452.90</td>
</tr>
<tr>
<td>1455.60</td>
<td>242.60</td>
<td>11.02</td>
<td>10.76</td>
<td>10.89</td>
<td>2.12</td>
<td>418.72</td>
</tr>
<tr>
<td>1698.20</td>
<td>242.60</td>
<td>13.10</td>
<td>13.70</td>
<td>13.40</td>
<td>2.51</td>
<td>353.66</td>
</tr>
<tr>
<td>1940.80</td>
<td>242.60</td>
<td>15.50</td>
<td>14.70</td>
<td>15.10</td>
<td>1.70</td>
<td>522.17</td>
</tr>
<tr>
<td>2133.40</td>
<td>242.60</td>
<td>17.86</td>
<td>16.30</td>
<td>17.08</td>
<td>1.98</td>
<td>448.33</td>
</tr>
<tr>
<td>2426.00</td>
<td>242.60</td>
<td>20.06</td>
<td>18.48</td>
<td>19.27</td>
<td>2.19</td>
<td>405.34</td>
</tr>
</tbody>
</table>

\(I_r = \sum I_{ri}/10 \)

\(\sum I_{ri} = 4763.00 \)

\(I_r = 476.30 \text{ cm}^4 \)

Tabela 8.6

da Tabela 7.1. temos: \(I_r = 387.10 \text{ cm}^4 \)
da Tabela 8.6. temos: \(I_r = 476.30 \text{ cm}^4 \)

logo: \(I_r = 53.93\% \text{ de } I_r \)
Viga VO3 33 parafusos \(ET = 7871 \text{ MPa} \) \(l = 240 \text{ cm} \)

<table>
<thead>
<tr>
<th>(P_i) (N)</th>
<th>(\Delta P) (N)</th>
<th>(v_1) (mm)</th>
<th>(v_2) (mm)</th>
<th>(\overline{v}) (mm)</th>
<th>(\Delta v) (mm)</th>
<th>(Ir_i) (cm(^4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>242.60</td>
<td>242.60</td>
<td>2.43</td>
<td>2.27</td>
<td>2.35</td>
<td>2.35</td>
<td>377.74</td>
</tr>
<tr>
<td>585.20</td>
<td>242.60</td>
<td>3.43</td>
<td>3.27</td>
<td>3.35</td>
<td>1.00</td>
<td>887.69</td>
</tr>
<tr>
<td>727.80</td>
<td>242.60</td>
<td>4.77</td>
<td>4.57</td>
<td>4.67</td>
<td>1.32</td>
<td>672.49</td>
</tr>
<tr>
<td>970.40</td>
<td>242.60</td>
<td>6.16</td>
<td>5.68</td>
<td>5.92</td>
<td>1.25</td>
<td>599.79</td>
</tr>
<tr>
<td>1213.00</td>
<td>242.60</td>
<td>7.35</td>
<td>6.93</td>
<td>7.14</td>
<td>1.72</td>
<td>516.10</td>
</tr>
<tr>
<td>1455.60</td>
<td>242.60</td>
<td>8.76</td>
<td>8.36</td>
<td>8.56</td>
<td>1.42</td>
<td>625.14</td>
</tr>
<tr>
<td>1698.20</td>
<td>242.60</td>
<td>10.26</td>
<td>9.80</td>
<td>10.03</td>
<td>1.47</td>
<td>603.87</td>
</tr>
<tr>
<td>1940.80</td>
<td>242.60</td>
<td>11.74</td>
<td>11.18</td>
<td>11.46</td>
<td>1.43</td>
<td>620.76</td>
</tr>
<tr>
<td>2183.40</td>
<td>242.60</td>
<td>13.30</td>
<td>12.62</td>
<td>12.96</td>
<td>1.50</td>
<td>591.80</td>
</tr>
<tr>
<td>2426.00</td>
<td>242.60</td>
<td>15.06</td>
<td>14.12</td>
<td>14.59</td>
<td>1.63</td>
<td>544.60</td>
</tr>
</tbody>
</table>

\[Ir = \frac{\Sigma Ir_i}{10} \]

\[\Sigma Ir_i = 6039.98 \]

\[Ir = 603.99 \text{ cm}^4 \]

Tabela 8.7

Da Tabela 7.1, temos: \(IT = 387.10 \text{ cm}^4 \)

Da Tabela 8.7, temos: \(Ir = 603.99 \text{ cm}^4 \)

Logo: \(Ir = 68.81\% \text{ de } IT \)
Viga V03 65 parafusos $E_T = 7871$ MPa $l = 240$ cm

<table>
<thead>
<tr>
<th>P_i (N)</th>
<th>ΔP (N)</th>
<th>v_1 (mm)</th>
<th>v_2 (mm)</th>
<th>\bar{v} (mm)</th>
<th>Δv (mm)</th>
<th>I_{ri} (cm4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>242.60</td>
<td>242.60</td>
<td>2.22</td>
<td>2.10</td>
<td>2.16</td>
<td>2.16</td>
<td>410.97</td>
</tr>
<tr>
<td>585.20</td>
<td>242.60</td>
<td>3.45</td>
<td>3.37</td>
<td>3.41</td>
<td>1.25</td>
<td>710.15</td>
</tr>
<tr>
<td>727.80</td>
<td>242.60</td>
<td>4.42</td>
<td>4.38</td>
<td>4.40</td>
<td>0.99</td>
<td>896.66</td>
</tr>
<tr>
<td>970.40</td>
<td>242.60</td>
<td>5.68</td>
<td>5.34</td>
<td>5.51</td>
<td>1.11</td>
<td>799.72</td>
</tr>
<tr>
<td>1213.00</td>
<td>242.60</td>
<td>6.78</td>
<td>6.50</td>
<td>6.64</td>
<td>1.13</td>
<td>785.57</td>
</tr>
<tr>
<td>1455.60</td>
<td>242.60</td>
<td>7.73</td>
<td>7.59</td>
<td>7.66</td>
<td>1.02</td>
<td>870.29</td>
</tr>
<tr>
<td>1698.20</td>
<td>242.60</td>
<td>9.00</td>
<td>8.84</td>
<td>8.92</td>
<td>1.26</td>
<td>704.52</td>
</tr>
<tr>
<td>1940.80</td>
<td>242.60</td>
<td>10.30</td>
<td>9.98</td>
<td>10.14</td>
<td>1.22</td>
<td>727.62</td>
</tr>
<tr>
<td>2183.40</td>
<td>242.60</td>
<td>11.28</td>
<td>11.10</td>
<td>11.19</td>
<td>1.05</td>
<td>845.42</td>
</tr>
<tr>
<td>2426.00</td>
<td>242.60</td>
<td>12.88</td>
<td>12.22</td>
<td>12.55</td>
<td>1.36</td>
<td>652.72</td>
</tr>
</tbody>
</table>

$Ir = \Sigma I_{ri}/10$

$Ir = 740.36$ cm4

Tabela S.3

da Tabela 7.1, temos: $Ir = 887.10$ cm4
da Tabela S.8, temos: $Ir = 740.36$ cm4

logo: $Ir = 83.47\%$ de Ir
8.3. Apresentação dos Resultados

8.3.1. Apresentação dos Resultados dos Cálculos da Inércia

Os resultados dos ensaios serão apresentados, a seguir, em tabelas, para as 13 vigas ensaiadas.

Os gráficos das figuras 8.6 e 8.7 mostram a variação de \(\tau /I_t \times \) número de parafusos para cada viga, e os gráficos das figuras 8.8 e 8.9 mostram a média de \(\tau /I_t \times \) número de parafusos para as vigas de Pinus e Castanheira.

<table>
<thead>
<tr>
<th>Viga</th>
<th>03</th>
<th>05</th>
<th>09</th>
<th>17</th>
<th>33</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>V01</td>
<td>44,31</td>
<td>46,49</td>
<td>53,31</td>
<td>66,52</td>
<td>75,37</td>
<td>86,05</td>
</tr>
<tr>
<td>V02</td>
<td>32,94</td>
<td>36,41</td>
<td>43,64</td>
<td>62,21</td>
<td>86,75</td>
<td>98,71</td>
</tr>
<tr>
<td>V03</td>
<td>34,65</td>
<td>37,94</td>
<td>41,53</td>
<td>53,93</td>
<td>68,81</td>
<td>83,47</td>
</tr>
<tr>
<td>V04</td>
<td>35,29</td>
<td>36,21</td>
<td>44,32</td>
<td>56,48</td>
<td>67,97</td>
<td>69,66</td>
</tr>
<tr>
<td>V05</td>
<td>42,44</td>
<td>45,28</td>
<td>49,32</td>
<td>60,85</td>
<td>68,44</td>
<td>70,69</td>
</tr>
<tr>
<td>V06</td>
<td>49,93</td>
<td>48,61</td>
<td>58,73</td>
<td>77,28</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Tabela 8.9 - Vigas de Pinus Elliottii
<table>
<thead>
<tr>
<th>Viga</th>
<th>03</th>
<th>05</th>
<th>09</th>
<th>17</th>
<th>33</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>V07</td>
<td>35.50</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>75.73</td>
</tr>
<tr>
<td>V08</td>
<td>38.01</td>
<td>41.60</td>
<td>47.46</td>
<td>58.10</td>
<td>75.34</td>
<td>85.58</td>
</tr>
<tr>
<td>V09</td>
<td>31.10</td>
<td>32.17</td>
<td>38.52</td>
<td>48.63</td>
<td>68.22</td>
<td>79.62</td>
</tr>
<tr>
<td>V10</td>
<td>39.47</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>81.32</td>
</tr>
<tr>
<td>V11</td>
<td>47.88</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>84.04</td>
</tr>
<tr>
<td>V12</td>
<td>48.07</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>82.38</td>
</tr>
<tr>
<td>V13</td>
<td>43.35</td>
<td>47.06</td>
<td>54.48</td>
<td>64.52</td>
<td>77.07</td>
<td>88.24</td>
</tr>
</tbody>
</table>

Tabela 8.10 – Vigas de Castanheira

Nas tabelas acima * significa que, para este número de parafusos, a viga não foi ensaiada.
V01, V02, V03, V04, V05, V07
IR/IT X No de Parafusos

Fig. 86
V08, V09, V10, V11, V12, V13
% IR/IT X No de Parafusos

Fig. 8.7
VIGAS DE PINUS

Media % IR/IT X No de Parafusos

IR/IT (%)

No de Parafusos
VIGAS DE CASTANHEIRA
Media % IR/IT X No de Parafusos

IR/IT (%)

No de Parafusos

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00

0.00 20.00 40.00 60.00 80.00 100.00
8.3.2. Deslizamento da Mesa em Relação à Alma

Para cada número de parafusos, foi realizada uma medida do deslizamento da mesa, em relação à alma nas duas extremidades de cada viga, para a carga máxima aplicada. As tabelas 8.11 e 8.12 apresentam estes resultados.

<table>
<thead>
<tr>
<th>deslizamento alma/mesa - mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>número de parafusos</td>
</tr>
<tr>
<td>viga</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>V01</td>
</tr>
<tr>
<td>V02</td>
</tr>
<tr>
<td>V03</td>
</tr>
<tr>
<td>V04</td>
</tr>
<tr>
<td>V05</td>
</tr>
<tr>
<td>V06</td>
</tr>
</tbody>
</table>

Tabela 8.11 - Vigas de Pinus Elliottii
Tabela 8.12 - Vigas de Castanheira

<table>
<thead>
<tr>
<th>Viga</th>
<th>número de parafusos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>03</td>
</tr>
<tr>
<td>V07</td>
<td>0.85</td>
</tr>
<tr>
<td>V08</td>
<td>1.00</td>
</tr>
<tr>
<td>V09</td>
<td>0.90</td>
</tr>
<tr>
<td>V10</td>
<td>1.00</td>
</tr>
<tr>
<td>V11</td>
<td>1.00</td>
</tr>
<tr>
<td>V12</td>
<td>0.80</td>
</tr>
<tr>
<td>V13</td>
<td>1.20</td>
</tr>
</tbody>
</table>

8.3.3. Ruptura

Após a análise do comportamento de cada viga na flexão, quando foi acompanhada, para cada número de parafusos, a flecha no ponto médio da viga, através de leituras consecutivas para cada valor da carga, procedeu-se à ruptura das vigas.

A leitura da flecha não foi realizada até a ruptura da viga, com o intuito de evitar danos aos relógios comparadores.

A seguir, estão apresentados, em forma de
tabelas. A carga de ruptura, o momento de ruptura e a descrição sobre o tipo de ruptura das vigas.

As figuras 8.10, 8.11, 8.12 e 8.13 mostram a ruptura de algumas vigas.

Carga e Momento de Ruptura

<table>
<thead>
<tr>
<th>Viga</th>
<th>L (cm)</th>
<th>(I) (cm(^4))</th>
<th>(P_{rup}) (kN)</th>
<th>(Mr_{rup}) (kNxcm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V01</td>
<td>240,00</td>
<td>364,10</td>
<td>6,07</td>
<td>364,20</td>
</tr>
<tr>
<td>V02</td>
<td>240,00</td>
<td>384,82</td>
<td>6,55</td>
<td>393,00</td>
</tr>
<tr>
<td>V03</td>
<td>240,00</td>
<td>387,02</td>
<td>3,98</td>
<td>538,80</td>
</tr>
<tr>
<td>V04</td>
<td>240,00</td>
<td>384,10</td>
<td>3,15</td>
<td>189,00</td>
</tr>
<tr>
<td>V05</td>
<td>240,00</td>
<td>368,28</td>
<td>5,34</td>
<td>320,40</td>
</tr>
</tbody>
</table>

Tabela 8.13 – Vigas de Pinus Elliottii

<table>
<thead>
<tr>
<th>Viga</th>
<th>L (cm)</th>
<th>(I) (cm(^4))</th>
<th>(P_{rup}) (kN)</th>
<th>(Mr_{rup}) (kNxcm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V07</td>
<td>140,00</td>
<td>76,95</td>
<td>6,07</td>
<td>212,45</td>
</tr>
<tr>
<td>V08</td>
<td>140,00</td>
<td>81,95</td>
<td>7,28</td>
<td>254,80</td>
</tr>
<tr>
<td>V09</td>
<td>140,00</td>
<td>75,16</td>
<td>5,58</td>
<td>195,30</td>
</tr>
<tr>
<td>V10</td>
<td>140,00</td>
<td>80,90</td>
<td>4,37</td>
<td>152,95</td>
</tr>
<tr>
<td>V11</td>
<td>175,00</td>
<td>225,56</td>
<td>8,01</td>
<td>350,44</td>
</tr>
<tr>
<td>V12</td>
<td>175,00</td>
<td>225,56</td>
<td>8,49</td>
<td>371,44</td>
</tr>
</tbody>
</table>

Tabela 8.14 – Vigas de Castanheira
<table>
<thead>
<tr>
<th>viga</th>
<th>descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>V01</td>
<td>ruptura na alma, cisalhamento acompanhando a camada externa do nó</td>
</tr>
<tr>
<td>V02</td>
<td>ruptura por tração no nó próximo ao apoio, zona tracionada da alma</td>
</tr>
<tr>
<td>V03</td>
<td>ruptura por tração na alma, sob a carga, mesa intacta</td>
</tr>
<tr>
<td>V04</td>
<td>ruptura por cisalhamento na face inferior da alma, acompanhando nó próximo à carga</td>
</tr>
<tr>
<td>V05</td>
<td>ruptura por tração, na fibra inferior da alma</td>
</tr>
</tbody>
</table>

Tabela 8.15 - Vigas de Pinus Elliotti
<table>
<thead>
<tr>
<th>viga</th>
<th>descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>V07</td>
<td>início de cisalhamento entre parafusos e esmagamento na fibra superior da alma</td>
</tr>
<tr>
<td>V08</td>
<td>ruptura por tração, na fibra inferior da alma</td>
</tr>
<tr>
<td>V09</td>
<td>ruptura por tração, na fibra inferior da alma</td>
</tr>
<tr>
<td>V10</td>
<td>ruptura por tração, na fibra inferior da alma</td>
</tr>
<tr>
<td>V11</td>
<td>ruptura por tração, na fibra inferior da alma</td>
</tr>
<tr>
<td>V12</td>
<td>ruptura por tração, na fibra inferior da alma</td>
</tr>
</tbody>
</table>

Tabela 8.16 - Vigas de Castanheira
9. ENSAIOS DA LIGAÇÕES PARAFUSADAS

Para melhor avaliação do comportamento do parafuso nas ligações, montou-se uma série de 14 corpos-de-prova, que foram ensaiados à Compressão Paralela às Fibras. Os corpos de prova foram montados, tendo uma peça central de largura b e duas laterais de largura b/2 cada uma.

A figura 9.1 ilustra o modelo.

A metodologia empregada teve por base o trabalho desenvolvido pelo prof. Stamato (71), em 1967.

A distância dos parafusos às extremidades e as distâncias entre parafusos obedecem ao que prescreve a NBR 7190 (72).

Os parafusos utilizados nesses ensaios foram os mesmos empregados na montagem das vigas compostas T. A relação espessura/diâmetro obedecem aos limites já comentados anteriormente.

Para evitar atrito entre o elemento central e os elementos laterais do corpo de prova, as faces dos três elementos foram lixados com lixa fina, retirando todas as asperezas da madeira e ainda assim foi, colocada entre as peças uma folha de papel alumínio, reduzindo-se, ao máximo, o atrito entre elas.

Para a medida das deformações, foram instalados dois relógios comparadores, de 5mm de curso e precisão de 10^{-3}mm, nas faces opostas do corpo de prova.

A figura 9.2 mostra o relógio comparador instalado.
Fig. 9.1 - Corpo de prova
(cotas em cm)
Fig. 9.2 - relógio comparador
Foram ensaiados 14 corpos-de-prova, sendo todos eles da mesma madeira, o Pinus Elliottii.

As ligações foram executadas sempre com 4 parafusos, sendo 2 em cada face. Doze corpos-de-prova foram montados com os 2 parafusos de cada face na mesma linha horizontal (fig. 9.3 a), os demais, com os 2 parafusos na mesma linha paralela à carga (fig. 9.3 b).

Constatou-se que tanto para os parafusos na horizontal como na vertical, o comportamento da ligação foi o mesmo, porém não se realizaram mais ensaios de corpos-de-prova com parafusos na mesma linha paralela à carga, por se ter necessidade de um maior comprimento do corpo-de-prova.

A figura 9.4 mostra o gráfico carga X deslocamento, das ligações parafusadas
CP05, CP11 e CP12
carga X deformação

deformação (mm)
carga (N)
A tabela a seguir ilustra a obtenção dos dados no ensaio.

<table>
<thead>
<tr>
<th>P (N)</th>
<th>ΔP (N)</th>
<th>rel 1 (\times 10^{-3}\text{mm})</th>
<th>rel 2 (\times 10^{-3}\text{mm})</th>
<th>d (\times 10^{-3}\text{mm})</th>
<th>Δd (\times 10^{-3}\text{mm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>242,60</td>
<td>242,60</td>
<td>45</td>
<td>23</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>485,20</td>
<td>242,60</td>
<td>80</td>
<td>48</td>
<td>64</td>
<td>30</td>
</tr>
<tr>
<td>727,80</td>
<td>242,60</td>
<td>100</td>
<td>66</td>
<td>83</td>
<td>19</td>
</tr>
<tr>
<td>970,40</td>
<td>242,60</td>
<td>130</td>
<td>92</td>
<td>111</td>
<td>18</td>
</tr>
<tr>
<td>1213,00</td>
<td>242,60</td>
<td>160</td>
<td>120</td>
<td>140</td>
<td>29</td>
</tr>
<tr>
<td>1455,60</td>
<td>242,60</td>
<td>200</td>
<td>170</td>
<td>185</td>
<td>45</td>
</tr>
<tr>
<td>1698,20</td>
<td>242,60</td>
<td>230</td>
<td>200</td>
<td>215</td>
<td>35</td>
</tr>
<tr>
<td>1940,80</td>
<td>242,60</td>
<td>261</td>
<td>235</td>
<td>248</td>
<td>33</td>
</tr>
<tr>
<td>2183,40</td>
<td>242,60</td>
<td>320</td>
<td>308</td>
<td>314</td>
<td>66</td>
</tr>
<tr>
<td>2426,00</td>
<td>242,60</td>
<td>340</td>
<td>344</td>
<td>342</td>
<td>28</td>
</tr>
<tr>
<td>2668,60</td>
<td>242,60</td>
<td>380</td>
<td>364</td>
<td>372</td>
<td>30</td>
</tr>
<tr>
<td>2911,20</td>
<td>242,60</td>
<td>420</td>
<td>410</td>
<td>415</td>
<td>45</td>
</tr>
<tr>
<td>3153,80</td>
<td>242,60</td>
<td>471</td>
<td>475</td>
<td>473</td>
<td>58</td>
</tr>
<tr>
<td>3396,40</td>
<td>242,60</td>
<td>520</td>
<td>530</td>
<td>525</td>
<td>52</td>
</tr>
<tr>
<td>3639,00</td>
<td>242,60</td>
<td>620</td>
<td>640</td>
<td>630</td>
<td>105</td>
</tr>
<tr>
<td>3881,60</td>
<td>242,60</td>
<td>700</td>
<td>730</td>
<td>715</td>
<td>85</td>
</tr>
<tr>
<td>4124,20</td>
<td>242,60</td>
<td>835</td>
<td>861</td>
<td>848</td>
<td>133</td>
</tr>
<tr>
<td>4366,80</td>
<td>242,60</td>
<td>950</td>
<td>980</td>
<td>965</td>
<td>117</td>
</tr>
<tr>
<td>4609,40</td>
<td>242,60</td>
<td>1130</td>
<td>1150</td>
<td>1140</td>
<td>175</td>
</tr>
<tr>
<td>4852,00</td>
<td>242,60</td>
<td>1430</td>
<td>1570</td>
<td>1500</td>
<td>360</td>
</tr>
<tr>
<td>5094,60</td>
<td>242,60</td>
<td>1740</td>
<td>1770</td>
<td>1755</td>
<td>255</td>
</tr>
<tr>
<td>5337,20</td>
<td>242,60</td>
<td>1900</td>
<td>2020</td>
<td>1960</td>
<td>205</td>
</tr>
</tbody>
</table>

Tabela 9.1 - Corpo-de-Prova CP04
A seguir, estão apresentados, em forma de tabela, os resultados dos ensaios de todos os corpos-de-prova.

<table>
<thead>
<tr>
<th>CP</th>
<th>Pr_{up} (N)</th>
<th>Pr_{up}/par (N)</th>
<th>* $P_{1.5}$ (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>6065</td>
<td>1516</td>
<td>3069</td>
</tr>
<tr>
<td>02</td>
<td>4366</td>
<td>1092</td>
<td>4176</td>
</tr>
<tr>
<td>03</td>
<td>5580</td>
<td>1395</td>
<td>4384</td>
</tr>
<tr>
<td>04</td>
<td>5337</td>
<td>1334</td>
<td>4852</td>
</tr>
<tr>
<td>05</td>
<td>6065</td>
<td>1516</td>
<td>5206</td>
</tr>
<tr>
<td>06</td>
<td>4852</td>
<td>1213</td>
<td>5022</td>
</tr>
<tr>
<td>07</td>
<td>4852</td>
<td>1213</td>
<td>**</td>
</tr>
<tr>
<td>08</td>
<td>5337</td>
<td>1334</td>
<td>4803</td>
</tr>
<tr>
<td>09</td>
<td>6308</td>
<td>1577</td>
<td>5255</td>
</tr>
<tr>
<td>10</td>
<td>5095</td>
<td>1274</td>
<td>4773</td>
</tr>
<tr>
<td>11</td>
<td>4852</td>
<td>1213</td>
<td>4639</td>
</tr>
<tr>
<td>12</td>
<td>5095</td>
<td>1274</td>
<td>4297</td>
</tr>
<tr>
<td>13</td>
<td>5337</td>
<td>1334</td>
<td>5042</td>
</tr>
<tr>
<td>14</td>
<td>4852</td>
<td>1213</td>
<td>4668</td>
</tr>
</tbody>
</table>

** Tabela 9.2

* $P_{1.5}$ refere-se à carga para a qual aconteceu o deslocamento de 1,5mm de uma peça em relação a outra.

** aconteceu a ruptura antes do deslocamento de 1,5mm
O deslocamento verificado consta de uma parcela do deslocamento do parafuso e outra da deformação da madeira, sendo, no entanto, a parcela relativa à madeira muito pequena, podendo ser considerada desprezível, visto que é algo em torno de 1% do total.

As figuras seguintes ilustram o ensaio e as deformações nos parafusos.

Fig. 9.5 - Ensaiio de compressão
Fig. 9.6
Deformação dos parafusos
10. EXEMPLO DE CÁLCULO E COMPARAÇÃO COM OS ENSAIOS

Seja uma viga de seção composta, cujo elemento de solidarização é o parafuso.

Dados:

- alma e mesa em Castanheira
- $E_t = 13580,6$ MPa (tabela 7.2 V13)
- $P = $ carga concentrada no meio do vão
- $l = 400$ cm

10.1. Verificação pela NBR 7190
a) Segundo o disposto no item 54 têm-se:

a.1) Borda comprimida

\[\bar{\sigma}_f = 0,15 \sigma_f \left(0,5 + 0,5 \beta \right) \]

\[\beta = \gamma \frac{b - b_0}{b} + \frac{b_0}{b} \]

\[\gamma = \text{função da relação d}_0/d \]

Se: \[b = 13,80 \text{ cm} \]
\[b_0 = 6,00 \text{ cm} \]
\[d_0 = 3,00 \text{ cm} \]
\[d = 17,00 \text{ cm} \]

temos, \[\frac{d_0}{d} = 0,18 \]
\[\gamma = 0,200 \text{ (tab. I NBR 7190)} \]

logo, \[\beta = 0,200 \frac{13,80 - 6,00}{13,80} + \frac{6,00}{13,80} = 0,55 \]

\[\sigma_f = 66,30 \text{ MPa (valor extraído de trabalho de Chahud)} \]

\[\bar{\sigma} = 7,70 \text{ MPa} \]

Se: \[\bar{\sigma}_f \geq \frac{M}{I} y_c \]

\[M = \frac{P L}{4} \]

logo: \[\bar{\sigma}_f \geq \frac{P L}{4 I} y_c \]

\[P \leq \frac{\bar{\sigma}_f \cdot 4I}{1.0} y_c \]

\[P \leq \frac{0,770 \cdot 4 \cdot 3406,69}{400 \cdot 7,19} \]

\[P \leq 3,65 \text{ kN} \]
a.2) Borda tracionada

\[\bar{\tau}_f = 0,15 \cdot \sigma_f \]

\[\bar{\sigma}_f = 0,15 \cdot 66,30 \]

\[\bar{\sigma}_f = 9,94 \text{ MPa} \]

\[\bar{\sigma}_f \geq \frac{M}{I} \cdot y \]

\[p \leq \frac{\bar{\sigma}_f \cdot 4 \cdot I}{l \cdot y} \]

\[p \leq \frac{0,994 \cdot 4 \cdot 3406,69}{400 \cdot 9,81} \]

\[P \leq 3,45 \text{ kN} \]

b) Segundo o item 59-a

\[\bar{\tau} = 0,10 \tau_R \]

\[\tau_R = 8,00 \text{ MPa} \]

\[\tau = 0,08 \text{ KN/cm}^2 \]

\[\tau = \frac{V \cdot S}{b \cdot I} \]

\[\tau = \frac{P}{2} \cdot \frac{S}{b \cdot I} \]

\[p = \frac{2 \cdot \tau \cdot b \cdot I}{S} \]

\[S = 13,80 \cdot 3 \cdot (7,19 - 1,5) + 4,19 \cdot 6 \cdot 4,19/2 \]

\[S = 289 \text{ cm}^3 \]

\[p = \frac{2 \cdot 0,08 \cdot 6 \cdot 3406,69}{289} \]
P = 11,32 kN

c) Pelo item 69-b

\[v = \frac{1}{350} \]

se: \[v = \frac{P.l^3}{48.E.I} \]

\[p = \frac{48.E.I}{350.l^2} \]

\[p = \frac{48.1358,06.3406,69}{400^2.350} \]

\[p \leq 3,97 \text{ kN} \]

d) Elementos de solidarização

Os parafusos são os elementos que resistirão ao fluxo de cisalhamento na superfície de contacto entre alma e mesa.

Considerando-se a capacidade de carga do parafuso utilizado aquela encontrada nos ensaios de compressão em corpos de prova de Pinus, tem-se \(p = 1321,28 \text{N} \)

\[F_{cis} = 2.\int_0^{1/2} t.b.dx \]

\[F_{cis} = 2.\int_0^{1/2} V.S'.b dx b.I \]

\[F_{cis} = \frac{V.S'.l}{I} \]

\[F_{cis} = \frac{P.S'.l}{2.I} \]
Feis = $\frac{3,45 \cdot 236 \cdot 400}{2 \cdot 340,69}$

3,45 = menor valor de P

Feis = 48 kN

\[n = \frac{48}{1,32} \]

\[n = 37 \text{ parafusos} \]

10.2. **Segundo prescrições da DIN 1052**

a) Tensões na flexão

\[M = \frac{P l}{4} \]

\[M = 100P \]

\[k = \frac{\pi^2 E F_1 F_2 e'}{l^2 (F_1 + F_2) c} \text{ c tabelado} \]

\[k = \frac{\pi^2 \cdot 135806 \cdot 41,4 \cdot 84 \cdot 18}{400^2 \cdot (41,4 + 84) \cdot 600} \]

\[k = 6,97 \]

\[\gamma = \frac{1}{1 + k} \]

\[\gamma = 0,125 \]
\[I_w = I_A + I_M + \gamma \left(F_1 \cdot a_1^2 + F_2 \cdot a_2^2 \right) \]

\[I_w = 1654.69 \text{ cm}^4 \]

a.1) Tensão na borda comprimida da mesa

\[\sigma_1 = \frac{M}{I_w} \cdot (\gamma \cdot a_1 \cdot \frac{F_1}{F_{in}} + \frac{h_1}{2} \cdot \frac{I_1}{I_{in}}) \]

as relações \(\frac{F_1}{F_{in}} \) e \(\frac{I_1}{I_{in}} = 1 \)

\[\sigma_1 = \frac{100P}{1653.51} \cdot (0.125 \cdot 5.69 + 1.5) \]

\[\sigma_1 \leq \sigma_F \]

\[\sigma_F = 9.95 \text{ MPa} \]

\[P \leq 7.44 \text{ kN} \]

a.2) Tensão atuante no centro de gravidade da mesa

\[\sigma_{a1} = \frac{M}{I_w} \cdot \gamma \cdot a_1 \cdot \frac{F_1}{F_{in}} \]

\[\sigma_{a1} = \frac{100P}{1654.69} \cdot 0.125 \cdot 5.69 \]

\[\sigma_{a1} \leq \sigma_F \]

\[P \leq 23.14 \text{ kN} \]

b) Verificação das tensões de cisalhamento na madeira

\[\tau_{\text{max}} = \frac{Q_{\text{max}} \cdot S_2}{b_2 \cdot I_w} \]
\[\tau_{\text{max}} = \frac{P \cdot S_2}{2b_2 \cdot l_0} \]
\[S_2 = (\frac{h^2}{2} + r \cdot a_2)^2 \cdot \frac{b_2}{2} \]

\[S_2 = (7 + 0.125 \cdot 2.81)^2 \cdot 3 \]
\[S_2 = 162.12 \text{ cm}^3 \]
\[\tau_{\text{max}} = \frac{P \cdot 162.12}{2 \cdot 6 \cdot 1653.51} \]
\[P \leq \frac{0.08 \cdot 2.6 \cdot 1653.51}{162.12}. \]
\[P \leq 14.68 \text{ kN} \]

c) Verificação pela flecha

\[v \leq \frac{1}{300} \]
\[v = \frac{P \cdot l^3}{48 \cdot E \cdot I} \]
\[P \leq \frac{48 \cdot 1358.06 \cdot 1654.69}{300 \cdot 400^2} \]
\[P \leq 2.25 \text{ kN} \]

10.3. Comparação dos resultados dos ensaios

A comparação dos resultados entre os valores da flecha para o carregamento aplicado nesta viga será apresentada a seguir em forma de tabela, onde consta o valor da flecha da viga com 33 e 65 parafusos.
<table>
<thead>
<tr>
<th>carga (N)</th>
<th>NBR 7190</th>
<th>DIN 1052</th>
<th>33 paraf</th>
<th>65 paraf</th>
</tr>
</thead>
<tbody>
<tr>
<td>242,60</td>
<td>0,70</td>
<td>1,44</td>
<td>1,46</td>
<td>1,18</td>
</tr>
<tr>
<td>484,20</td>
<td>1,40</td>
<td>2,87</td>
<td>2,25</td>
<td>1,89</td>
</tr>
<tr>
<td>727,80</td>
<td>2,10</td>
<td>4,32</td>
<td>2,93</td>
<td>2,62</td>
</tr>
<tr>
<td>970,40</td>
<td>2,80</td>
<td>5,76</td>
<td>3,69</td>
<td>3,35</td>
</tr>
<tr>
<td>1213,00</td>
<td>3,50</td>
<td>7,20</td>
<td>4,39</td>
<td>4,15</td>
</tr>
<tr>
<td>1455,60</td>
<td>4,19</td>
<td>8,64</td>
<td>5,19</td>
<td>4,95</td>
</tr>
<tr>
<td>1698,20</td>
<td>4,89</td>
<td>10,08</td>
<td>5,99</td>
<td>5,74</td>
</tr>
<tr>
<td>1940,80</td>
<td>5,59</td>
<td>11,52</td>
<td>6,83</td>
<td>6,47</td>
</tr>
<tr>
<td>2183,40</td>
<td>6,29</td>
<td>12,96</td>
<td>7,76</td>
<td>7,16</td>
</tr>
<tr>
<td>2426,00</td>
<td>6,99</td>
<td>14,40</td>
<td>8,69</td>
<td>7,93</td>
</tr>
<tr>
<td>2668,60</td>
<td>7,69</td>
<td>15,85</td>
<td>9,71</td>
<td>8,64</td>
</tr>
<tr>
<td>2911,20</td>
<td>8,39</td>
<td>17,29</td>
<td>10,56</td>
<td>9,39</td>
</tr>
<tr>
<td>3153,80</td>
<td>9,09</td>
<td>18,73</td>
<td>11,61</td>
<td>10,20</td>
</tr>
<tr>
<td>3396,40</td>
<td>9,78</td>
<td>20,15</td>
<td>12,68</td>
<td>10,99</td>
</tr>
<tr>
<td>3639,00</td>
<td>10,49</td>
<td>21,61</td>
<td>13,59</td>
<td>11,81</td>
</tr>
<tr>
<td>3881,60</td>
<td>11,19</td>
<td>23,05</td>
<td>14,62</td>
<td>12,56</td>
</tr>
<tr>
<td>4124,20</td>
<td>11,89</td>
<td>24,49</td>
<td>15,63</td>
<td>13,40</td>
</tr>
</tbody>
</table>

Tabela 10.1 – Comparação de valores de flecha
11. CONCLUSÕES

Analisando-se a revisão bibliográfica, a experimentação realizada e a comparação de resultados apresentados no exemplo, resumem-se, a seguir, as conclusões finais do trabalho:

11.1. A literatura, tanto nacional quanto internacional, não apresenta dados e/ou conclusões relativas à utilização do parafuso auto-atarraxante como elemento de solidarização em vigas compostas de madeira submetidas à flexão.

11.2. Outro item importante, em que se nota a total falta de referências na literatura, é um estudo sobre o comportamento dos parafusos auto-atarraxantes como elemento de ligação de peças estruturais de madeira.

11.3. As recomendações específicas para o dimensionamento de peças compostas submetidas à flexão, encontradas nas normas citadas no capítulo 3, não fornecem ao projetista segurança necessária à utilização desses elementos em estruturas de madeira de grande porte.

11.4. Na determinação dos módulos de elasticidade longitudinais, observou-se uma variação considerável entre os valores obtidos para o Pinus Elliottii e os valores obtidos para a Castanheira.

11.5. Na montagem das peças compostas, um cuidado especial deve ser tomado quando se utilizar espécies de madeira que apresentam densidades mais altas.
11.6. Analisando-se os resultados apresentados nas tabelas 8.9 e 8.10, pode-se concluir que, com 33 parafusos, a inércia real das peças, tanto de *Pinus* quanto de *Castanheira*, corresponde a 74% da inércia teórica. Com 65 parafusos, a inércia real das mesmas espécies corresponde a 82% da inércia real.

11.7. Em função do exposto em 11.6, e analisando-se os resultados apresentados no capítulo 9 e no capítulo 10, verifica-se que um estudo mais profundo sobre o comportamento do elemento de solidarização torna-se necessário antes de definir-se qual o número ideal de parafusos a ser utilizado em peças compostas submetidas à flexão.

11.8. Analisando-se a tabela 10.1, pode-se concluir que a DIN 1052 é mais conservadora, comparada à NBR 7190, no que diz respeito às deformações em peças compostas submetidas à flexão e apresenta valores, para o caso específico do exemplo, superiores aos obtidos na experimentação.
No desenvolvimento deste trabalho, foram abordados diversos aspectos relacionados à flexão de peças compostas de madeira com seção transversal T, utilizando-se o parafuso auto-atarraxante como elemento de solidarização. Entretanto, muitos aspectos importantes não foram analisados e devem ser estudados para o desenvolvimento das peças compostas de madeira.

Entre os temas importantes, sugerem-se, para a continuação dos estudos, os itens abaixo relacionados.

12.1. Determinação da capacidade de carga da ligação parafusada, para as espécies de madeira mais utilizadas em engenharia de estruturas.

12.2. Determinação experimental do espaçamento mínimo entre parafusos auto-atarraxantes em ligações de peças de madeira.

12.3. Determinação experimental do diagrama de tensões normais na flexão, para peças compostas com parafusos auto-atarraxantes.

12.4. Determinação experimental do diagrama de tensões tangenciais na flexão para peças compostas com parafusos auto-atarraxantes.
12.5. Proposta de dimensionamento de peças compostas com parafusos auto-atarrazantes, com o objetivo de gerar subsídios para a revisão da NBR 7190.
REFERÊNCIAS BIBLIOGRÁFICAS

07- FOSCHI, R. O. & BONAC, T.. Load-Slip Characteristics for Connections with Common Nails Wood Science,

24- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS Cálculo e Execução de Estruturas de Madeira NBR7190, Rio de Janeiro, ABNT, 1951.

33- BEGHTEL, S. C. & NORRIS, Charles B.. Strength of Wood
Beams of Rectangular Cross Section as Affected by Span-Depth Ratio. USDA-FS-FPL, Mad., Wis. (1910), 1959.

40- MARCH, H. W.. Stress-Strain Relations in Wood and Plywood Considered as Orthotropic Materials. USDA-FS-
FPL, Mad., Wis. s/d (Mimeo nº 1503).

50- LUCHESE, J. A. e STAMATO, M. C.. Ligações de Peças de Peroba Rosa com Parafusos de Aço São Carlos, Escola de Engenharia de São Carlos, Publicação nº 147, 1967.

55- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS Cálculo e Execução de Estruturas de Madeira NBR7190, Rio de Janeiro, ABNT, 1951.
56- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS Cálculo e Execução de Estruturas de Madeira NBR7190, Rio de Janeiro, ABNT, 1951.

57- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS Cálculo e Execução de Estruturas de Madeira NBR7190, Rio de Janeiro, ABNT, 1951.

58- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS Cálculo e Execução de Estruturas de Madeira NBR7190, Rio de Janeiro, ABNT, 1951.

59- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS Cálculo e Execução de Estruturas de Madeira NBR7190, Rio de Janeiro, ABNT, 1951.

60- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS Cálculo e Execução de Estruturas de Madeira NBR7190, Rio de Janeiro, ABNT, 1951.

66- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS Cálculo e Execução de Estruturas de Madeira NBR7190, Rio de Janeiro, ABNT, 1951.

71- LUCHESE, J. A. e STAMATO, M. C.. Ligações de Peças de Peroba Rosa com Parafusos de Aço São Carlos, Escola de Engenharia de São Carlos, Publicação nº 147, 1967.

72- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS Cálculo e Execução de Estruturas de Madeira NBR7190, Rio de Janeiro, ABNT, 1951.
BIBLIOGRAFIA

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Cálculo e Execução de Estruturas de Madeira NBR7190, Rio de Janeiro ABNT, 1951.

BREUER, H.. Ligação de Peças Estruturais de Madeira por Uniões Chapa-Prego São Carlos, LAMEM EESC, 1983.

CALIL JUNIOR, C.. Silos de Madeira São Carlos, Escola de Engenharia de São Carlos, 1978.

CHAHUD, E.. Módulo de Elasticidade Longitudinal e Proposta

LUCHESSE, J. A. e STAMATO, M. C.. Ligações de Peças de Peroba Rosa com Parafusos de Aço São Carlos, Publicação

MANTILLA CARRASCO, E. V.. Ligação de Pecas Estruturais de Madeira por Pregos Belo Horizonte, EEUFMG, 1983.

MARCH, H. W.. Stress-Strain Relations in Wood and Plywood Considered as Orthotropic Materials. USDA-FS-FPL, Mad., Wis. s/d (Mimeo nº 1503).

SETCHEPINE, J. L.. Mise au Point d'une Methode Experimental Destinee a L'identification de La Matrice des

ANEXO 1
RELATÓRIO DE INSPEÇÃO DE RECEBIMENTO

N.

Fornecedor - Razão Social

COMPAHIA SIDERÚRGICA
BELGO MINEIRA.

Nº Nota Fiscal

404489

Data & E.

12.06.91

Quantid.

5135 KG

Descrição do material

ARAME BTC ESPECIAL PARA PARAFUSOS (ACO PL 10 E)

Quantidade Recebida

5135 KG

Conferente

ALEXANDRO

Data

12.06.91

Característica

<table>
<thead>
<tr>
<th>Especificado</th>
<th>Encontrado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø do arame</td>
<td>3.34 - 3.40</td>
</tr>
<tr>
<td>Dureza</td>
<td>162 - 252 HB</td>
</tr>
</tbody>
</table>

Plano de Controle:

<table>
<thead>
<tr>
<th>Inspetor:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Conclusão</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aprovado</td>
</tr>
<tr>
<td>Aprovado c/ seleção</td>
</tr>
<tr>
<td>Aprovado c/ recuperação interna</td>
</tr>
</tbody>
</table>

Compras

<table>
<thead>
<tr>
<th>Nº Nota Fiscal - Devolução</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fornecedor/Contato</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Devolução</th>
<th>Reposição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Díbito</td>
<td></td>
</tr>
<tr>
<td>Desconto</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Visto Almoxártico</th>
</tr>
</thead>
</table>

Data:

23.07.91

Visto C.Q.
INDÚSTRIAS MICHELETTO S.A.

CONTROLE DE QUALIDADE - DIVISÃO DE PARAFUSOS

RELATÓRIO DE INSPEÇÃO DO PRODUTO

<table>
<thead>
<tr>
<th>Código MITO</th>
<th>3.10.01 236.10</th>
</tr>
</thead>
</table>

DIMENSIONAL

<table>
<thead>
<tr>
<th>Medida</th>
<th>Especificado</th>
<th>Verificado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diâmetro da cabeça</td>
<td>9.90 - 10.90</td>
<td>10.99 - 10.60</td>
</tr>
<tr>
<td>Altura da cabeça</td>
<td>MAX 3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>LARGURA DA Fenda</td>
<td>1.66 - 1.91</td>
<td>1.80 - 1.85</td>
</tr>
<tr>
<td>PROFUND. DA Fenda</td>
<td>1.00 - 1.50</td>
<td>1.20 - 1.50</td>
</tr>
<tr>
<td>ÂNGULO DA CABEÇA</td>
<td>80º - 90º</td>
<td>81º - 82º</td>
</tr>
</tbody>
</table>

ROSCA

<table>
<thead>
<tr>
<th>Medida</th>
<th>Especificado</th>
<th>Verificado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diâmetro externo</td>
<td>6.30 - 5.55</td>
<td>5.76 - 5.43</td>
</tr>
<tr>
<td>Passe</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Anel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprimento</td>
<td>73.8 - 76.2</td>
<td>75.8 - 76.2</td>
</tr>
<tr>
<td>Calibre “passa-não passa”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPRAIMENTO DA ROSCA</td>
<td>MIN 36.9</td>
<td>42.8 - 44.3</td>
</tr>
<tr>
<td>DIÂMETRO INTERNO</td>
<td>~ 3.70</td>
<td>3.90</td>
</tr>
</tbody>
</table>

CARACTERÍSTICAS MECÂNICAS

<table>
<thead>
<tr>
<th>Medida</th>
<th>Especificado</th>
<th>Verificado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>AÇO SAE 1010</td>
<td>Satisfatório</td>
</tr>
<tr>
<td>Dureza superficial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dureza núcleo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidade da cimentação</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistência ao torque</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dobramento</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRATAMENTO SUPERFICIAL

<table>
<thead>
<tr>
<th>Medida</th>
<th>Expecificado</th>
<th>Verificado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acabamento</td>
<td>ZINCADO CLARO</td>
<td>VISUAL OK</td>
</tr>
<tr>
<td>Resistência ao corrosão</td>
<td>8 - 13 µC</td>
<td>12 - 17 µC</td>
</tr>
<tr>
<td>CAMADA DE ZINCO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observações:

Data: 23.07.91

Assinatura: [Assinatura aqui]
INDÚSTRIAS MICHELETTO S.A.

CONTROLE DE QUALIDADE - DIVISÃO DE PARAFUSOS

RELATÓRIO DE INSPEÇÃO DO PRODUTO

Nº: OF. 1747

Denominação: MOC. FS. RC. 3.5 x 45 1/4

BITEMA: 3.5 x 45 1/4

Código: AC. 45 1/4

Código MITTO: 3.10.01.132.10

<table>
<thead>
<tr>
<th>DIMENSIONAL</th>
<th>ESPECIFICADO</th>
<th>VERIFICADO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diâmetro da cabeça</td>
<td>6.20 - 6.82</td>
<td>6.37 - 6.82</td>
</tr>
<tr>
<td>Altura da cabeça</td>
<td>MAX 2.10</td>
<td>2.15</td>
</tr>
<tr>
<td>LARGURA DA FENHA</td>
<td>1.06 - 1.20</td>
<td>1.08 - 1.17</td>
</tr>
<tr>
<td>PROFUND. DA FENHA</td>
<td>0.60 - 0.95</td>
<td>0.85 - 1.00</td>
</tr>
<tr>
<td>ANGULO DA CABEÇA</td>
<td>80° - 82°</td>
<td>81° - 82°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ROSCA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diâmetro externo</td>
<td>3.35 - 3.60</td>
</tr>
<tr>
<td>Passo</td>
<td>1.6</td>
</tr>
<tr>
<td>Anel</td>
<td></td>
</tr>
<tr>
<td>Comprimento</td>
<td>42.9 - 44.5</td>
</tr>
<tr>
<td>Calibra "passa-não passa"</td>
<td></td>
</tr>
<tr>
<td>COMPRIMENTO DA ROSCA</td>
<td>28.6 - 29.6</td>
</tr>
<tr>
<td>DIÂMETRO INTERNO</td>
<td>~ 2.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS MECÂNICAS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>AÇO SAE 1010</td>
</tr>
<tr>
<td>Dureza superficial</td>
<td></td>
</tr>
<tr>
<td>Durabilidade do núcleo</td>
<td></td>
</tr>
<tr>
<td>Profundidade da cementação</td>
<td></td>
</tr>
<tr>
<td>Resistência ao torque</td>
<td></td>
</tr>
<tr>
<td>Dobramento</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRATAMENTO SUPERFICIAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acabamento</td>
<td></td>
</tr>
<tr>
<td>Resistência à corrosão</td>
<td></td>
</tr>
<tr>
<td>CAMADA DE ZINCO</td>
<td>0.1 - 0.13 μ</td>
</tr>
<tr>
<td></td>
<td>0.01 - 0.015 μ</td>
</tr>
</tbody>
</table>

Observações:

Data: 23.02.91

Ass.: [Assinatura]
<table>
<thead>
<tr>
<th>Quantidade Recebida</th>
<th>Conferente</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>8939 KG</td>
<td>ALEXANDRE</td>
<td>21.05.91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Característica</th>
<th>Especificado</th>
<th>Encontrado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricante Qualificado</td>
<td>5.34 - 5.40</td>
<td>5.36 - 5.38</td>
</tr>
<tr>
<td>Identificação do material</td>
<td>162 - 190HB</td>
<td>189 - 222HB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plano de Controle:</th>
<th>Inspecção:</th>
<th>Data: 21.05.91</th>
</tr>
</thead>
</table>

Conclusão
- [] Aprovado
- [] Aprovado e seleção
- [] Aprovado e recuperação interna
- [x] Reprovado Parcial
- [] Reprovado
- [] Repreçoado

<table>
<thead>
<tr>
<th>Compras</th>
<th>Almoxartado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº Nota Fiscal - Devolução</td>
<td>Data NF.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Provências</th>
<th>Visto compras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devolução</td>
<td>1/1</td>
</tr>
<tr>
<td>Débito</td>
<td>Data</td>
</tr>
<tr>
<td>Desconto</td>
<td>Vista Almoxartado - Data: 23.07.91</td>
</tr>
</tbody>
</table>

MODELO: 001
<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>C</th>
<th>MN</th>
<th>SI</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>A52672A</td>
<td>0.030</td>
<td>0.350</td>
<td>0.032</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>DIMENSIONAL</td>
<td>ESPECIFICADO</td>
<td>VERIFICADO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diâmetro do cabeceiro</td>
<td>9,90 - 10,60</td>
<td>10,75 - 11,75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura da estrela</td>
<td>1,33</td>
<td>1,34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largura da fenda</td>
<td>1,66 - 1,91</td>
<td>1,73 - 1,82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profundidade da fenda</td>
<td>1,00 - 1,30</td>
<td>1,25 - 1,50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ângulo da cabeça</td>
<td>60° - 80°</td>
<td>67° - 69°</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ROSCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diâmetro reta</td>
</tr>
<tr>
<td>Passo</td>
</tr>
<tr>
<td>Anel</td>
</tr>
<tr>
<td>Comprimento</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARACTERÍSTICAS MECÂNICAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Onda superficial</td>
</tr>
<tr>
<td>Dureza Parcial</td>
</tr>
<tr>
<td>Percentual de penetração</td>
</tr>
<tr>
<td>Resistência de torção</td>
</tr>
<tr>
<td>Duroceramento</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRATAMENTO SUPERFICIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquecimento</td>
</tr>
<tr>
<td>Resistência à corrosão</td>
</tr>
<tr>
<td>Coating de Zinco</td>
</tr>
</tbody>
</table>
CERTIFICADO DE ANÁLISE QUÍMICA N.º 299.0491

CUENTO: MICHELETTO MINAS LTDA.

PEDIDO N.º: 10600131

PRODUTO: ARAME BTO ESPECIAL CLARO PARA PARAFUSOS

BIDOLA: 03.40 MM AÇO PL10 E

ANÁLISE QUÍMICA

| CORRIDA N.º | % C | % Mn | % P | % S | % Si | % Al | % Cr | % Ni | % Mo | % Ca | % B | %
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>145.463</td>
<td>0.060</td>
<td>0.435</td>
<td>0.076</td>
<td>0.007</td>
<td>0.024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBSERAÇÕES:

MICHELETTO MINAS LTDA.
Att. Eng. Eydher Queiroz Freitas
RUA CYPRIANO MICHELETTO, 54
32210 - CONTAGEM - MG - BRASIL

A COMPANHIA SIDERÚRGICA BELGO-MINEIRA NÃO SE RESPONSABILIZA POR CóPIAS DO PRESENTE CERTIFICADO QUE FOREM REPRODUZIDAS PARA FORNECIMENTO A TERCEIROS.

CONTAGEM, 14/06/91 08:33:19

Antonio Teixeira Cabral CRQ102380689